6.8b Linear Combinations and Spanning Sets 2

Yesterday we considered the notion of a **Linear Combination** (*scalar multiplication and vector addition*):

e.g. Given two vectors \vec{u} and \vec{v} , then $\vec{w} = a\vec{u} + b\vec{v}$ is called a linear combination of \vec{u} and \vec{v} .

Consider the standard unit vectors for \mathbb{R}^2 : $\hat{i} = (1,0)$ and $\hat{j} = (0,1)$. We can write any vector in \mathbb{R}^2 as a linear combination if the standard unit vectors!!

Consider $\vec{u} = (x, y)$

Thus the set of vectors $\{\hat{i}, \hat{j}\}$ is called a

Similarly, the set of vectors $\{(1,0,0), (0,1,0), (0,0,1)\}$

Definition 6.8b.1

Given vectors \vec{u} and \vec{v} , we call the set of all possible linear combinations of $\vec{u} \& \vec{v}$ the **SPAN** of $\{\vec{u}, \vec{v}\}$.

We write $span\{\vec{u}, \vec{v}\} = \{\vec{w} = a\vec{u} + b\vec{v}, a, b \in \mathbb{R}\}$

Thus we can write $span\{\hat{i}, \hat{j}\} =$

Now, spanning sets are not

Consider the set $A = \{(1,0), (0,1), (3,2)\}$. Clearly *span* $\{A\} =$

BUT

Definition 6.8b.2

We call a set which is **NOT linearly dependent** a **linearly independent set**.

Definition 6.8b.3

A linearly dependent set of vectors, $A = \{\vec{u}, \vec{v}\}$, which spans another set $B = \{\vec{w} = a\vec{u} + b\vec{v}, a, b, \in \mathbb{R}\}$ is called a **BASIS** of that set.

So, the set $A = \{\hat{i} = (1,0), \hat{j} = (0,1)\}$ is a basis for

And now for some more difficult stuff...

Example 6.8b.1

Show $span\{(1,2),(-1,3)\} = \mathbb{R}^2$

In \mathbb{R}^3 , and two non-collinear vectors form a plane.

Picture

Note: the set
$$A = \{\vec{u}, \vec{v}\}$$
 is **NOT**

Three **non-coplanar** vectors **WILL** span \mathbb{R}^3 .

Picture:

An Important Question:

How can we determine if three vectors (in \mathbb{R}^3) are non-coplanar?

Answer:

Example 6.8b.2

From your text: Pg. 41 #13a

Show that the vectors (-1,2,3), (4,1,-2) and (-14,1,16) do not lie in the same plane.

Class/Homework for Section 6.8 (pt. 2) Pg. 340 - 342 #1 – 6, 7, 10, 11, 8, 9, 12b, 13b, 14, 15