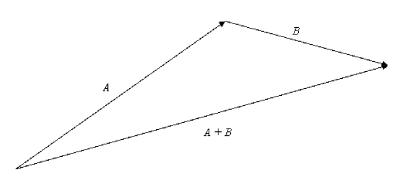

MCV4U Chapter 6 - Introduction to Vectors: Practice Test

Multiple Choice

There may or may not be Multiple Choice Questions on the actual test.

1.	\overrightarrow{A} and \overrightarrow{B} form a right angle. If $\left \overrightarrow{A}\right = 5$ and	$\left \overrightarrow{B}\right = 4$, what is $\left \overrightarrow{3A} + \overrightarrow{B}\right $?				
	a. 9.54	c. 4.36				
	b. 15.52	d. 19.21				
2.	$\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ conveys which property of vectors?					
		c. distributive property of addition				
	b. associative property of addition	d. none of the above				
2						
3.	A goes from $(2, 1)$ to $(4, -1)$. Determine the components of A.					
	a. (6, 0)	c. (2, -2)				
	b. (-2, 2)	d. (0, 6)				
4.	A parallelogram is defined by $\overrightarrow{OA} = (1, 2)$ and $\overrightarrow{OB} = (3, 2)$. Determine the length of its diagonal.					
	a. $\sqrt{5}$	c. $4\sqrt{2}$				
	b. $2\sqrt{2}$	d. 32				
5.	Which of the following sets of vectors spans a plane in R^3 ?					
	a. $\{(1, 0, 0), (2, 0, 0)\}$	c. $\{(0, 2, 1), (0, 6, 3)\}$				
	b. $\{(1, 3, 1), (2, 6, 2)\}$	d. $\{(0, 2, 2), (2, 0, 2)\}$				
6.	Adding a vector to the zero vector					
	a. produces the zero vector	c. changes the vector's direction				
	b. preserves the non-zero vector	d. reduces the vector's magnitude				



- 7. The prism is bisected by the *xy*-plane. The point P = (3, 7, 3). Determine *F*. a. (-3, 7, 3)b. (3, 7, -3)c. (3, 7, -3)c. (3, 7, -3)
 - b. (3, -7, 3) d. (-3, -7, -3)
- 8. Write the vector (2, -5) using unit vectors.
 - a. $2\vec{i}+5\vec{j}$ c. $5\vec{i}+2\vec{j}$ b. $2\vec{i}-5\vec{j}$ d. $-5\vec{i}+2\vec{j}$
- 9. If $\overrightarrow{A} = -3 \, \overrightarrow{i} + 2 \, \overrightarrow{j} + 4 \, \overrightarrow{k}$, determine $\left| \overrightarrow{A} \right|$. a. $\sqrt{29}$ b. $\sqrt{11}$ c. $\sqrt{3}$ d. 3
- 10. Which of the following would be a linear combination of $\{(a, b), (c, d)\}$? $(a, b, c, d \neq 0)$
 - a. (2a, b + 2d) c. (2a + 2c, b)
 - b. (2a + c, 2b + d) d. (2a, 2d)

Written Solutions:

There will definitely be problems like these on the test. A communications grade out of 10 will be awarded for well presented solutions.

11. $|\overrightarrow{A}| = 3$, $|\overrightarrow{B}| = 5$ and the angle between \overrightarrow{A} and \overrightarrow{B} is 30°. Determine $|\overrightarrow{A} + \overrightarrow{B}|$ and the angle \overrightarrow{A} makes with $\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{B} + \overrightarrow{A}/4$

- 12. If $\vec{a} = 2\vec{x} + \vec{y}$ and $\vec{b} = -7\vec{x} + 2\vec{y}$, express \vec{x} and \vec{y} in terms of \vec{a} and \vec{b} . T/3
- A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.
 K/2
- 14. If $\overrightarrow{A} = 2\vec{i} + \vec{j} \vec{k}$ and $\overrightarrow{A} + \overrightarrow{B} = \vec{i} + 4\vec{j} + \vec{k}$, what is \overrightarrow{B} ? (write the vector \overrightarrow{B} in two ways.) T/3
- 15. Determine the magnitude of the vector going from (2, 1, 3) to (1, 1, 1). **K/3**
- 16. Does the set $\{(\frac{1}{2}, 1), (4, 8)\}$ span R^2 ? Whay or why not? **K/2**
- 17. What do the set of vectors {(1, 3, 2), $(\frac{1}{2}, \frac{3}{2}, 1)$, (-2, -6, -4)} span? Explain your reasoning. A/3
- 18. Vector \overrightarrow{AB} goes from (1, 0) to (2, 1). Vector \overrightarrow{CD} starts at (4, 2). a. Calculate the magnitude of \overrightarrow{AB} . b. If $\overrightarrow{AB} = \overrightarrow{CD}$, determine the endpoint of \overrightarrow{CD} . A/2
- 19. If 3(a, 3, 2) 2(3, b, b) = (-3, 1, -2), determine *a* and *b*. Describe the set spanned by the vectors. **A/4**

MCV4U Chapter 6 - Introduction to Vectors: Practice Test Answer Section

MULTIPLE CHOICE

1.	ANS:	B PTS	: 1	REF:	Thinking		
	OBJ:	6.3 - Multiplication of a Vector by a Scalar					
2.	ANS:	B PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.4 - Properties of Vectors					
3.	ANS:	C PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.6 - Operations with Algebraic Vectors in R ²					
4.	ANS:	C PTS	: 1	REF:	Application		
	OBJ:	6.6 - Operations with Algebraic Vectors in R ²					
5.	ANS:	D PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.8 - Linear Combinations and Spanning Sets					
6.	ANS:	B PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.2 - Vector Addition					
7.	ANS:	C PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.5 - Vectors in R ² and R ³					
8.	ANS:	B PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.6 - Operations with Algebraic Vectors in R ²					
9.	ANS:	A PTS	: 1	REF:	Knowledge and Understanding		
	OBJ:	6.7 - Operations with Vectors in R^3					
10	ANS	B PTS	• 1	REF	Knowledge and Understanding		

10. ANS: B PTS: 1 REF: Knowledge and Understanding OBJ: 6.8 - Linear Combinations and Spanning Sets

SHORT ANSWER

11. ANS: 7.74 PTS: 1 REF: Thinking OBJ: 6.2 - Vector Addition 12. ANS: $\vec{x} = \frac{1}{11}(2\vec{a} - \vec{b})$ and $\vec{y} = \frac{2}{11}(\vec{b} + \frac{7}{2}\vec{a})$ PTS: 1 REF: Application OBJ: 6.4 - Properties of Vectors 13. ANS: (4, 4) or (-4, -4)REF: Application OBJ: 6.6 - Operations with Algebraic Vectors in R^2 PTS: 1 14. ANS: $-\vec{i}+3\vec{j}+2\vec{k}$ PTS: 1 REF: Thinking OBJ: 6.7 - Operations with Vectors in R^3

15. ANS: $\sqrt{5}$

PTS: 1 REF: Application OBJ: 6.7 - Operations with Vectors in R³

16. ANS:

No, because the two vectors are collinear.

PTS: 1 REF: Communication OBJ: 6.8 - Linear Combinations and Spanning Sets

17. ANS:

They are all collinear, so they only span a line in R^3 .

PTS: 1 REF: Thinking OBJ: 6.8 - Linear Combinations and Spanning Sets

PROBLEM

18. ANS:

a. Use the distance formula:

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(2 - 1)^2 + (1 - 0)^2} = \sqrt{2}$$

b. Determine the slope of AB to determine its direction:

$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{1}{1}$$

Use the slope to determine the possible endpoint, (5, 3). Check by determining the magnitude of *CD* with endpoint (5, 3):

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(5 - 4)^2 + (3 - 2)^2} = \sqrt{2}$$

PTS: 1 REF: Thinking OBJ: 6.1 - An Introduction to Vectors

19. ANS:

Looking at the *x*-components:

3a - 6 = -3So, a = 1. Looking at the y-components: 9 - 2b = 1So, b = 4. Check: (3 - 6, 9 - 8, 6 - 8) = (-3, 1, -2)

This set spans a plane in \mathbb{R}^3 since the vectors (1, 3, 2) and (3, 4, 4) are not collinear. The vector (-3, 1, -2) is not needed to span this plane since it can be written as a linear combination of the other two vectors.

PTS: 1 REF: Communication

OBJ: 6.8 - Linear Combinations and Spanning Sets