7.3 The Dot Product: A Geometric View

Definition 7.3.1

Given vectors \vec{a} and \vec{b} with angle θ between them, then the Dot Product is given by: $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)$

Note: $\left| \vec{a} \right|, \left| \vec{b} \right|$ and $\cos(\theta)$ are all just

Further note that the Dot Product depends on the cosine of an angle. Thus, the Dot Product will have a

Now, \forall vectors \vec{a} and \vec{b} , the angle θ between the vectors has the property that

Example 7.3.1

Given that two vectors $\vec{a} \& \vec{b}$ are perpendicular, determine $\vec{a} \cdot \vec{b}$

Note: Given that $\vec{a} \cdot \vec{b} = 0$

Example 7.3.2

a) Given
$$|\vec{a}| = 5$$
, $|\vec{b}| = 3$ and the angle between them is $\frac{\pi}{4}$, determine $\vec{a} \cdot \vec{b}$.

b) Given $\left| \vec{c} \right| = 7$, determine $\vec{c} \cdot \vec{c}$.

Algebraic Properties of the Dot Product

Given vectors \vec{a} , \vec{b} and \vec{c} and scalar k,

1) $\vec{a} \cdot \vec{b} =$ 2) $\vec{a} \cdot (\vec{b} \cdot \vec{c}) =$ 3) $\vec{a} \cdot \vec{a} =$ 4) $\vec{k} (\vec{a} \cdot \vec{b}) =$ Note: $\vec{a} \cdot (\vec{b} \cdot \vec{c})$

Example 7.3.3

Given $|\vec{a}| = 3$, $|\vec{b}| = 2$ and that the vectors $\vec{u} = (2\vec{a} - 3\vec{b})$ and $\vec{v} = (\vec{a} + 2\vec{b})$ are **perpendicular**, determine the angle between \vec{a} and \vec{b} .

Class/Homework for Section 7.3 Pg. 377 - 378 #1 – 16