7.5 Projections: Scalar and Vector

Scalar Projections

Consider the vector diagram:

Notation: The "amount of \vec{a} -ness" along the direction of \vec{b} is called

Now, we know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta)$, and so we can write

Example 7.5.1 Given $\vec{a} = (1, 2, 3)$ and $\vec{b} = (-2, 1, 4)$ determine the scalar projections of: a) \vec{a} on \vec{b} b) \vec{b} on \vec{a}

Direction Cosines

Sometimes, especially in \mathbb{R}^3 , the idea of "direction" is difficult to pin down (or better – direction can be difficult to describe mathematically). Consider the sketch of a position vector in \mathbb{R}^3 .

Example 7.5.2

Given $\vec{u} = (3, -2, 1)$ determine the angle \vec{u} makes with the x-axis and the y-axis to the nearest degree.

Class/Homework for Section 7.5 Pg. 398 – 400 #3, 4, 6 (scalar only), 7 (scalar only)