7.5b Projections: Scalar and Vector (2)

Vector Projections

Recall that given two vectors \vec{a} and \vec{b} we can find how much " \vec{a} -ness" there is along the vector \vec{b} (or vice versa).

Picture

We can **construct** a **vector** along \vec{b} with a length (magnitude) of $comp_{\vec{b}}\vec{a}$. But to do this, we will need the "pure direction" of \vec{b} . We will need a **unit vector** along \vec{b} which we can "scale" with the scalar $comp_{\vec{b}}\vec{a}$.

That is, we want to use the vector

Thus, a vector of length $comp_{\vec{a}}\vec{b}$ in the direction of \vec{b} is given by

Example 7.5.3

Given $\vec{a} = (3,5,-1)$ and points B(2,-1,3) and C(5,3,-2) determine the vector projection of \vec{a} on \overrightarrow{BC} .

Example 7.5.4

Given P(3, -4, -6) find the vector projection of \overrightarrow{OP} onto the *z*-axis.

Class/Homework for Section 7.5b Pg. 398 – 400 #8, 11, 12, 14, 15