7.7 Applications of the Dot and Cross Products

Given two non collinear vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$, with $\vec{a} = (a_1, a_2, a_3)$, and $\vec{b} = (b_1, b_2, b_3)$ then:

Dot Product

Geometric Form

Algebraic Form

Cross Product

Geometric Form

Algebraic Form

Consider the fact that $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta)$ (see Pg. 411 for a proof). Further consider a **unit** vector \hat{n} perpendicular to the plane containing \vec{a} and \vec{b} . Then the geometric form of $\vec{a} \times \vec{b}$ is Consider the following picture (note: $\vec{a}, \vec{b} \in \mathbb{R}^3$):

The parallelogram arising from the vectors \vec{a} and \vec{b} has an area given by:

Example 7.7.1

Calculate the area of a triangle with vertices A(2,0,1), B(1,1,2) and C(4,1,3).

Two Applications

Dot Product and Work

Physics tells us that *Work* = (*Force applied*)(*displacement*). Consider the picture:

Thus

W =

Example 7.7.2

From your text: Pg. 415 #3b

Calculate the amount of work done when a 40kg rock falls 40m down a slope at 50° to the vertical.

Cross Product and Torque

Torque is the "twisting" force around a turning point. (e.g. the force on a bolt by a wrench.) Consider the (poorly drawn) picture:

Class/Homework for Section 7.7 Pg. 415 #2, 3, 5, 6, 8, 10