8.2 Cartesian and Symmetric Equations of Lines

Example 8.2.1

Determine vector and parametric equations for the line through $P_0(2, -1)$ and with direction vector $\vec{m} = (2, -3)$.

Wait what if we solve both parametric equations for *t*?

In general the symmetric equation for a line (in \mathbb{R}^2) given $P_0(x_0, y_0)$ and $\vec{m} = (a, b)$ is:

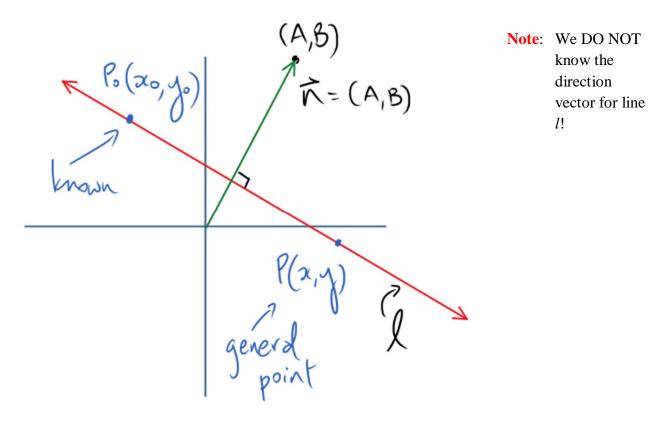
Example 8.2.2

Determine vector, parametric and symmetric equations for the line (in "scalar" form)

$$y = -\frac{2}{3}x + 4$$

The Cartesian Equation of a Line

Consider the following sketch:



Definition 8.2.1

A **normal vector** $\vec{n} = (A, B)$ to a line with direction vector $\vec{m} = (a, b)$

Example 8.2.3

Determine an equation of a line which is perpendicular to 3x - 4y + 5 = 0.

Example 8.2.4

Determine the Cartesian equation of a line in \mathbb{R}^2 passing through $P_0(5, -2)$ with normal $\vec{n} = (2, -7).$

Example 8.2.5

Given lines

 $l_1:(x, y) = (1,3) + t(2,3)$ $l_2:(x, y) = (0, -2) + s(-1, 4)$

Determine the angle between l_1 and l_2 .

Class/Homework for Section 8.2 Pg. 442 Investigation (whistle a happy tune) Pg. 443 – 444 #1 – 3, 5 – 7, 9, 10, 12