8.5 The Cartesian Equation of a Plane

In \mathbb{R}^2 we saw that the Cartesian Equation of a Line is given by: Ax + By + C = 0, where the vector $\vec{n} = (A, B)$ was a **normal** to the line (recall that **normal** means

In \mathbb{R}^3 a line has no normal (or infinitely many normals, depending on your perspective) which gives another reason that there is no "scalar" equation of a line in \mathbb{R}^3 . However, we can obtain a normal to a plane in \mathbb{R}^3 !

Consider the diagram:

Example 8.5.1

Determine the Cartesian equation of the plane containing the point $P_0(3, -1, 2)$ and with normal vector $\vec{n} = (2, -1, 5)$.

Two Methods

Example 8.5.2

Determine Vector, Parametric and Cartesian equations of the plane through the three (coplanar) points $P_1(3,-1,2)$, $P_2(0,2,-1)$ and $P_3(-1,2,3)$

Vector:

Parametric:

Cartesian:

Example 8.5.3

Given the Cartesian equation of the plane π : 2x + y - 3z + 2 = 0, find a vector equation for π .

Class/Homework for Section 8.5 Pg. 468 – 469 #1, 2, 4 – 6 ,8 – 11