9.5 9.6 Distances and Vectors

9.5 Distance Between a Point and a Line

A) We'll begin this exploration in \mathbb{R}^2 . Consider the picture:

Note that the distance *d* lies along the direction of the normal \vec{n} . Think **projection**!

B) Distance between a point and a line in \mathbb{R}^3 . (Note that in \mathbb{R}^3 lines have no normals!) Consider the picture:

Po(xo, yo, 2) $l: \vec{r} = \vec{l}_0 + t\vec{m}$ 0 120 Note that $\sin\left(\theta\right) = \frac{d}{\left|\overline{QP}\right|}$ 0 $Q(x_{1}, y_{1}, z_{1})$ (an, b, c)

9.6 Distance Between a Point and a Plane

Consider the picture:

Po(20, Jo, 20) PR $P_{I}(x,y_{1},z) = 0$ ~ - (A, B, C)

Example 9.5.1

Determine the distance between the parallel lines (in $\mathbb{R}^2)$

1)
$$\vec{r} = (3, -2) + s(2, 1), s \in \mathbb{R}$$

2) $\vec{r} - (4, 1) + t(2, 1), t \in \mathbb{R}$

Example 9.5.2

Determine the distance from $P_0(3,1,-2)$ to the line $\vec{r} = (2,1,0) + t(1,-2,-1), t \in \mathbb{R}$.

Example 9.5.3

Determine the distance between the (parallel) planes:

 $\pi_1 : 3x - y + 4z + 7 = 0$ $\pi_2 : 3x - y + 4x - 3 = 0$

Class/Homework for Section 9.5 9.6

Pg. 540 – 541 #5 – 8 (read Ex. 4 Method 2 for #8) Pg. 550 #2, 3, 5 (read Ex. 2 pg. 544 for #2)