CALCULUS

Chapter 1 —-Introduction to the Calculus
(Material adapted from Chapter 1 of your text)
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1.1 Radical Expressions: Rationalizing

YOURE LUCKY, PO YOU YOU DON'T HAVE TO KNOW
KNOW THAT BIRP 7 YOU'RE | | ABOUT RATIONALIZING THE

LUCKY BECAUSE YOU DON'T | | DENOMINATOR AND DUMB
THINGS LIKE THAT

HAVE TO STUDY MATH!
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In the above cartoon Peppermint Patty calls the bird lucky for not having t/know how to
rationalize radicals (square roots, really). As it turns out, the Woodstock is actually lucky
because he can rationalize. In Calculus being able to rationalize a denominator (or a numerator)

is a necessary skill, and so we’ll spend a little time honing that skill.

Definition 1.1.1
The conjugate of a binomial expression a+b is a—b.

Example 1.1.1 (- = > é
Determine the conjugate of
a) 5-/3x b) \2x* ++/10
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We can use the conjugate to rationalize a binomial expression which contains square roots. That
IS to say, we can eliminate the square roots (the irrational part) of a binomial expression (sort
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Note: Only “conjugate” the part of the

34 9% expression indicated. So, in this example,
— “leave the numerator alone~Also remember
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Example 1.1.3

Example 1.1.2

Rationalize the denominator of

\/7+5
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Rationalize the numerator of
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Class/Homework for Section 1.1

Pg.9#2,3,5-7




1.2 The Slope of a Tangent \ Ay A @«cm, o b

This concept is a key to unlocking the tool box of Differential Calculus.
We’ll begin by looking at a couple of examples.

Example 1.2.1
Consider the diagram:
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Sf y& Question: Why can we always
(Ag*j calculate the slope of a secant?
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Example 1.2.2
Consider the diagram:
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Pictures are as much your friends as
Factors are
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Algebraic Technique /)\:'”"Ck Jf‘?f 17"!' Neves ?ﬂ%b %@/{1
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In making h smaller and smaller (that is, as we let L\ —> 5 ), we are actually using what we call
a limit technique.

If we write for the slope of a secant to a function

a+ h
M.,
then, m,, = M)
L\f"?a
Example 1.2.4
Determine the slope of the tangent to f =3x*+latx=2. Az 2
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Example 1.2.5
Calculate the slope of the tangent to g =+X+latx=3.

M~ é‘w\ (M’/ i 7(5)

fin [ L2~
-l T ( —

tﬂ_avﬂ iﬁw

W P eep fooy

@VJ\ (45%\)“*4/
.
K Frn *2> I C

—_—

é{‘

]7‘

Class/Homework for Section 1.2

Pg. 18 -21#4,6 -9, 11, 16, 20 - 22.




