$A \infty \Omega$

MCV4U – Problem Set

1.2 The Slope of a Tangent

1. Simplify the Difference Quotients:

a.
$$\frac{(8+h)^2-64}{h}$$
 b. $\frac{\frac{2}{3+h}-\frac{2}{3}}{h}$ c. $\frac{3(2+h)^3-24}{h}$ d. $\frac{2\sqrt{4+h}-4}{h}$ (hint: conjugate)

- 2. Determine, and simplify, an expression describing the slope of a secant through the given points:
 - a. P(2,3), $Q(2+h,(2+h)^2-1)$
 - b. $A(1, f(1)), B(1+h, f(1+h)), \text{ where } f(x) = 2x^3 1$
 - c. R(0,2), $S(h,\sqrt{h+4})$
- 3. Using a limit on the slope of a secant, determine the slope of the tangent to each curve at the given domain value (Don't forget a domain value isn't enough info...you need a *point!*):

a.
$$f(x) = -2x^2 + 5$$
, at $x = 1$

b.
$$g(x) = -2x^2 + 5x$$
, at $x = 1$

c.
$$h(x) = \sqrt{2x+1}$$
, at $x = 4$

d.
$$p(x) = \frac{3}{x}$$
, at $x = 2$

- 4. Determine the *equation of the tangent* to the curve $f(x) = 2x^2 + x + 3$ at the point (2,13). (Hint: a tangent is a line and so has an equation with a form like y = mx + b. Find m!)
- 5. A young Calculus student managed to lock himself in a room in a tower, 50m high. Looking out the window he notices a damsel of rescue and decides to get her attention by throwing a stone at her feet. The stone's height, as a function of time, is described by the function h(t) = -4.9t² t + 50 (h is in m, and t is in seconds). Unfortunately for our student (who, let's face it, isn't very bright) the stone smashes through the windshield of a parked police car. Determine (DON'T BE AFRAID OF DECIMALS!!):
 - a. The average velocity of the stone over the time interval $t \in [0, 2]$.
 - b. The instantaneous velocity of the stone at t = 2 seconds.
 - c. The velocity the stone hits the police car's windshield if the point of impact is 1m above ground (hint: you will need the time t when h(t) is 1m).

- 6. Determine the coordinates of the point on the curve $f(x) = -2x^2 + 3x$ where the tangent to f(x) is parallel to the line y = 5x + 2 (slope is your friend...do you see how friendly mathematics is?!?).
- 7. Determine the equation of the line that passes through (2,2) and is parallel to the tangent to the curve $f(x) = -3x^2 2x$ at (-1,5).

Answers to Selected Problems:

1. b.
$$-\frac{2}{3(3+h)}$$
 d. $\frac{2}{\sqrt{4+h}+2}$

2. b.
$$6+6h+2h^2$$

3. b.
$$m_{\text{tan}} = 1$$
 d. $m_{\text{tan}} = -\frac{3}{4}$

4.
$$y = 9x - 5$$

5. a.
$$v_{avg} = -10.8m/s$$
 b. $v = -20.6m/s$ c. $t = 3.3s$, $v = -33.34m/s$

6.
$$(-0.5, -2)$$

7.
$$y = 4x - 6$$