2.1 The Derivative as a Function

1. For each function calculate f'(a) for the given value of a.

a.
$$f(x) = 2x^2 + 1$$
, $a = 3$ b) $f(x) = \sqrt{2x - 1}$, $a = 5$ c) $f(x) = \frac{4}{x - 1}$, $a = 3$

2. Using the formal definition of the derivative (Definition 2.1.2) determine f'(x) for each function (this skill is also known as Finding a Derivative from First Principles):

a.
$$f(x) = x^3 - 2x$$
 b) $f(x) = \sqrt{2-x}$ c) $f(x) = 4x + 5$ d) $f(x) = \frac{x+1}{x-2}$

- 3. A ball is moving through space and its **position** is described by the function $s(t) = -4.9t^2 + t + 5$. Determine the ball's **velocity** at times t = 0, 2, 3 seconds. (Hint: it's easiest if you find velocity as a function of time).
- 4. Determine the equation of the tangent to the function $g(x) = \sqrt{x-1}$, and which is parallel to the line with equation $y = \frac{1}{4}x 1$.
- 5. At what point on the graph of $f(x) = x^2 4x 5$ is the tangent parallel to 2x y = 1? (From the Nelson text: Pg. 75#19)

Answers to Selected Questions:

1. a) 12 c) -1 2. b)
$$f'(x) = -\frac{1}{2\sqrt{2-x}}$$
 d) $f'(x) = -\frac{3}{(x-2)^2}$ 4. $y = \frac{1}{4}x + \frac{3}{4}$
5. (3,-8)