## 2.2 Derivative of Polynomial Functions (Both sides of this page)

1. Using the Power Rule, and the Sums and Differences Rule, differentiate each of the following:

a. 
$$f(x) = 3x^3 - 4x^2 + 3x - 5$$

b. 
$$g(x) = 2x^{-4}$$

a. 
$$f(x) = 3x^3 - 4x^2 + 3x - 5$$
 b.  $g(x) = 2x^{-4}$  c.  $h(x) = \frac{2}{3}x^3 - \frac{3}{5}x^5 + \frac{1}{2}x^4$ 

2. Differentiate each of the following:

a. 
$$f(x) = x^3 (2x-5)$$

a. 
$$f(x) = x^3(2x-5)$$
 b.  $p(t) = \frac{t^4 + 4t^3 - 3t}{2t}$ ,  $t > 0$  c.  $y = -4x^{\frac{3}{2}}$ 

c. 
$$y = -4x^{\frac{3}{2}}$$

d. 
$$g(x) = \sqrt{x^3} + 5\sqrt{x}$$
 e.  $h(x) = \frac{2}{x^3}$ 

e. 
$$h(x) = \frac{2}{x^3}$$

3. Determine the slope of the tangent to the given curve, at the given domain value:

a. 
$$f(x) = 2x^3 - 5x + \sqrt{x}$$
,  $a = 4$  b.  $g(x) = 3x^{\frac{2}{3}} - 5x + 1$ ,  $a = 8$ 

b. 
$$g(x) = 3x^{\frac{2}{3}} - 5x + 1$$
,  $a = 8$ 

c. 
$$p(t) = \frac{5}{t^2}$$
,  $a = 2$ 

- 4. Determine the equation of the tangent to the curve  $f(x) = 2x^3 5x^2 + 3$  at the point P(2,-1).
- 5. Determine the value(s) of x so that the tangent to the function  $f(x) = \frac{3}{\sqrt[3]{x}}$  is parallel to the line x - 8y + 1 = 0.
- 6. Tangents are drawn to the parabola  $y = x^2$  at (2,4) and  $\left(-\frac{1}{8}, \frac{1}{64}\right)$ . Show that the tangents are perpendicular to each other. (From the Nelson Text: Pg. 83 #13)
- 7. Show that there are two tangents to the curve  $g(x) = \frac{1}{5}x^5 10x$  that have a slope of 6. (From the Nelson Text: Pg. 83#16)
- 8. A subway train travels from one station to the next in 2 minutes. Its distance (in km) from the first station after t minutes is given by  $s(t) = t^2 - \frac{1}{3}t^3$ . At what time with the train have a velocity of  $0.5km/\min$ . (From the Nelson Text: Pg. 84 #21)

9. Tangents are drawn from the point (0,3) to the parabola  $f(x) = -3x^2$ . Find the coordinates of the points where the tangents touch the curve. (Draw a sketch) (From the Nelson Text: Pg. 84 #23)

Answers to Selected Problems

1b) 
$$g'(x) = -8x^{-5}$$

1b) 
$$g'(x) = -8x^{-5}$$
 2a)  $f'(x) = 8x^3 - 15x^2$  c)  $y' = -6\sqrt{x}$  3c)  $m_{tan} = -\frac{5}{4}$ 

c) 
$$y' = -6\sqrt{x}$$

3c) 
$$m_{\text{tan}} = -\frac{5}{4}$$

4) 
$$y = 4x - 7$$

4) 
$$y = 4x - 7$$
 8)  $t = \frac{2 \pm \sqrt{2}}{2}$  sec (0.29 and 1.71 seconds)