2.3 The Product Rule, and The Power of a Function Rule

1) Use the Product Rule to differentiate the following (simplify as much as possible):

a.
$$f(x) = (3x^2 - 5x + 1)(2x^3 - 7x^2 + 2x - 5)$$

b.
$$g(x) = (2x-1)(x+7)(-3x+2)$$

2) Use the Power of a Function Rule to differentiate the following:

a.
$$f(x) = (2x+3)^{43}$$

b.
$$g(x) = (3x^2 - 5x + 1)^{-2}$$

c.
$$h(x) = \frac{1}{(2x-17x^3)^{11}}$$

3) We didn't see any of these in the lesson, but **I believe in you**. Differentiate each of the following (*Note: You'll need to use the Product Rule and the Power of a Function Rule, and the basic Power Rule!*). Simplify as much as possible (Remember – Factored Form is your Friend!)

a.
$$f(x) = (x-5)^2 (x+1)^5$$

b.
$$g(x) = \frac{x+1}{x-1}$$
 (Hint: rewrite the function as a product of two functions)

c.
$$f(x) = (2x+3)^2 (3x-5)^3$$

d.
$$h(x) = (x-3)^3 (2x+1)^2$$

e.
$$f(x) = (x-2)^2 (3x+2)^3 (x+4)^2$$
 (Triple product...)

- 4) Determine the equation of the tangent to the curve $f(x) = (x+3)^2 (2x+1)^3$ at the point (-1,-4).
- 5) Determine the point(s) on the curve $h(x) = 3(x-1)(x^2-4)$ where the tangent is horizontal. Round your values to two decimal places. (Hint: What is the slope of a horizontal line?)

Answers to Selected Problems

1)
$$f'(x) = (6x-5)(2x^3-7x^2+2x-5)+(3x^2-5x+1)(6x^2-14x+2)$$

2)
$$g'(x) = \frac{-2(6x^2 - 5)}{(3x^2 - 5x + 1)^3}$$

3a)
$$f'(x) = (x-5)(x+1)^4 (7x-23)$$

3c)
$$f'(x) = (2x+3)(3x-5)^2(30x+7)$$

5)
$$(-0.87,1.26)$$
, and $(1.54,-2.64)$