2.3b More Product Rule Examples

Recall that the product rule says that given two differentiable functions f(x) and g(x), then the "product function" $F(x) = f(x) \cdot g(x)$ is also differentiable, and

$$\frac{dF}{dx}(x) = \frac{df}{dx}(x) \cdot g(x) + f(x) \cdot \frac{dg}{dx}(x) \text{ or, } F'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Example 2.3.5

Differentiate, and simplify $f(t) = (3t^2 - 2t)(5t^3 - 2t^2 + 1)^3$

Example 2.3.6

Determine the derivative of $h(x) = \frac{3x-2}{5x^2+1}$

$$h'(x) = (3x - 2)(5x^{2} + 1)^{-1}$$

$$h'(x) = (3)(5x^{2} + 1)^{-1} + (3x - 2)(-1)(5x^{2} + 1)^{2}(10x)$$

$$h'(k) = \frac{3}{5x^{2} + 1} + \frac{(3x - 2)(-1)(10x)}{(5x^{2} + 1)^{2}}$$

$$= \frac{1}{5x^{2} + 1} \left(\frac{3(5x^{2} + 1) - (3x - 2)(10x)}{(5x^{2} + 1)} \right)$$

$$= \frac{1}{5x^{2} + 1} \left(\frac{(15x^{2} + 3) - (30x^{2} - 20x)}{5x^{2} + 1} \right)$$

$$= \frac{1}{5x^{2} + 1} \left(\frac{(15x^{2} + 3) - (30x^{2} - 20x)}{5x^{2} + 1} \right)$$

$$= \left(\frac{-15x^2 + 20x + 3}{(5x^2 + 1)^2}\right)$$

Example 2.3.7

Differentiate $s(t) = 3t^2(2t-5)$

$$s(H) = 6t(z+-5) + 3t^{2}(z)$$

 $= 6t(z+-5) + 6t^{2}$
 $= 6t(z+-5) + t)$
 $= 6t(3t-5)$

Example 2.3.8

Determine the slope of a tangent to $f(x) = 2x^3 (3x^2 - 5x + 1)^4$ at x = 1

Class/Homework for Section 2.3b Pg. 90 – 91 #7 – 10, Pg. 92 #6 – 8