local max.

3.2 Extreme Values

The Maximum or Minimum values which some function may have are called Extreme Values.

Definition 3.2.1

If a differentiable function, f(x), has a **local extremum** at a domain value x = c, then f'(c) = 0

Pictures $\begin{pmatrix}
-\frac{2}{5}, 27
\end{pmatrix}$ $-3 \qquad -2 \qquad -1$ $-20 \qquad \qquad \begin{pmatrix}
\frac{12}{5}, -10
\end{pmatrix}$ $-60 \qquad \qquad \begin{pmatrix}
\frac{12}{5}, -10
\end{pmatrix}$

f(n) has a Local Max of 27 $at x = -\frac{1}{5}$ and Local Min of $-10 at x = \frac{12}{5}$

Note: f(n) doer Not have an absolute max or min.

g(x) here e lad max at x=1.5 of 1 But the value g(1.5)=1 15 ALSO on absolut max lad min

 $\int_{52}^{2} \left[-2, 3.5 \right]$

glastyle min of -20 of

Definition 3.2.2

Given a differentiable function, f(x), we call any point (c, f(c)) a **critical point** of (we call such domain values, 2000, critical f(x) whenever f'(c) = 0

The Extreme Value Theorem

(E.V.T.)

Given a differentiable function, f(x), defined on a closed interval $x \in [a,b]$, then f(x) is guaranteed an absolute/global maximum, and an absolute/global minimum. These absolute extrema occur at the endpoints of the interval, or at points (c, f(c)), inside the interval, where a < c < b, and where f'(c) = 0. (No Proof given)

The Algorithm for Finding Absolute/Global Extreme Values

Note: In this explanation we assume that the functions we are working with are differentiable on the given closed interval.

- 1) Differentiate f(x) (defined on the closed interval $x \in [a,b]$), and find all domain values x = c $(c \in (a,b))$ where f'(c) = 0. Such domain values are called critical values.
- 2) Test all critical values, x = c, and the domain values of the endpoints, x = a, and x = b, in the function f(x) to calculate the absolute/global max and min values.

Example 3.2.1

Determine the absolute extrema of:

1) $f(x) = \frac{1}{x}$ on $x \in [-1, 2]$

2) $g(x) = x^3 - 3x^2 - 9x + 2$ on $x \in [-2, 2]$

The set distribute extreme

1) Note: The EV.T. (does not apply) to $f(z) = \frac{1}{z^2}$ on (-1,2)Since f(0) is undefined and $0 \in (-1,2)$. i. f(x)15 not differentiable on (-1,2)

2)
$$g(x) = x^{3} - 3x^{2} - 9x + 2$$
 on $[-2, 2]$
 $g(x) = 3x^{2} - 6x - 9$
 $(.v. =) g(x) = 0$
 $\Rightarrow 3x^{2} - 6x - 9 = 0$
 $\Rightarrow x^{2} - 2x - 3 = 0$

$$\Rightarrow (2x-3)(2x+1) = 0$$

$$\therefore \text{ The critical values are } 2x=3, x=-1$$

Test
$$x = -1$$
 or $x = -2$ rendroints $x = 2$

$$g(-1) = (-1)^{3} - 3(-1)^{3} - 9(-1) + 2 = 7$$

$$g(-2) = 0$$

$$g(2) = -20$$

e'.
$$g(n)$$
 has an absolute max of 7 at $n=-1$
and an absolute min of -20 at $n=2$

Class/Homework for Section 3.2

Note: g(2) is a polynomial.

polynomial.

cliffble

-- The EUT down

epply.

Note: 3 £ [-2, 2] :. da't consider