4.1 Intervals of Increase and Decrease

1. Determine the critical values for the functions:

a.
$$f(x) = x^4 + 6x^2 - 5$$

b.
$$g(x) = \sqrt{2x^2 - x}$$

c.
$$h(x) = \frac{5x}{x^2 + 1}$$

- 2. For each of the following graphs, state
 - i. the intervals where the function is increasing
 - ii. the intervals where the function is decreasing
 - iii. the points where the tangent to the function is horizontal

a.

C.

b.

d.

(Taken from the text: Pg. 169 #3)

3. Use graphing technology to determine where the given function is increasing and decreasing:

a.
$$f(x) = 3x^4 + 4x^3 - 12x^2$$

b.
$$g(x) = \frac{x-1}{x^2 + 3}$$

c.
$$h(x) = \frac{1}{4}x^4 - 2x^2 + 1$$

4. Sketch a graph of a continuous function, f(x), with the following characteristics:

a.
$$f'(x) < 0$$
 when $x < -3$

b.
$$f'(x) > 0$$
 when $-3 < x < 2$, and $x > 5$

c.
$$f'(-3) = 0$$
 and $f'(2) = 0$ and $f'(5) = 0$

d.
$$f(-3) = -2$$
, $f(2) = 3$ and $f(5) = -1$

Also, state the intervals where f(x) is increasing and decreasing.

If f(x) is a polynomial function, what would be its minimum order and what would be the sign of its leading coefficient?

5. Suppose g(x) is a differentiable function with derivative g'(x) = (x+1)(x-2)(x-4). Determine the intervals of increase and decrease for g(x).

Answers to selected problems:

1a)
$$x = 0$$
 b) $x = \frac{1}{4}$ c) $x = \pm 1$

- 3a) Increasing on $x \in (-2,0) \cup (1,\infty)$, decreasing elsewhere.
- 5) Decreasing on $x \in (-\infty, -1) \cup (2, 4)$, increasing elsewhere.