Note: The tangent lying above the

curve would indicate a max, while a min would have the tangent

below the curve.

4.4 Concavity and Points of Inflection

(These problems are taken from the Nelson Text: Pg. 205 – 206)

2. Determine the critical points for each function, and use the second derivative test to decide if the point is a local maximum, a local minimum, or neither.

a.
$$y = x^3 - 6x^2 - 15x + 10$$
 c. $s = t + t^{-1}$

c.
$$s = t + t^{-1}$$

b.
$$y = \frac{25}{x^2 + 48}$$

d.
$$y = (x - 3)^3 + 8$$

- 3. Determine the points of inflection for each function in question 2. Then conduct a test to determine the change of sign in the second derivative.
- 4. Determine the value of the second derivative at the value indicated. State whether the curve lies above or below the tangent at this point.

a.
$$f(x) = 2x^3 - 10x + 3$$
 at $x = 2$

c.
$$p(w) = \frac{w}{\sqrt{w^2 + 1}}$$
 at $w = 3$

b.
$$g(x) = x^2 - \frac{1}{x}$$
 at $x = -1$

a.
$$f(x) = 2x^3 - 10x + 3$$
 at $x = 2$ c. $p(w) = \frac{w}{\sqrt{w^2 + 1}}$ at $w = 3$
b. $g(x) = x^2 - \frac{1}{x}$ at $x = -1$ d. $s(t) = \frac{2t}{t - 4}$ at $t = -2$

5. Each of the following graphs represents the second derivative, f''(x), of a function f(x):

f''(x) is a linear function.

f''(x) is a quadratic function.

For each of the graphs above, answer the following questions:

- i. On which intervals is the graph of f(x) concave up? On which intervals is the graph concave down?
- ii. List the x-coordinates of all the points of inflection.
- iii. Make a rough sketch of a possible graph of f(x), assuming that f(0) = 2.

(over)

- 9. Sketch the graph of a function with the following properties:
 - f'(x) > 0 when x < 2 and when 2 < x < 5
 - f'(x) < 0 when x > 5
 - f'(2) = 0 and f'(5) = 0
 - f''(x) < 0 when x < 2 and when 4 < x < 7
 - f''(x) > 0 when 2 < x < 4 and when x > 7
 - f(0) = -4
- 10. Find constants a, b, and c such that the function $f(x) = ax^3 + bx^2 + c$ will have a local extremum at (2, 11) and a point of inflection at (1, 5). Sketch the graph of y = f(x).
- 11. Find the value of the constant b such that the function $f(x) = \sqrt{x+1} + \frac{b}{x}$ has a point of inflection at x = 3.

Answers to Selected Problems

- 2. a. local minimum: (5, -105), local maximum: (-1, 20)
 - **b.** local maximum: $\left(0, \frac{25}{48}\right)$
 - c. local maximum: (-1, -2), local minimum: (1, 2)
 - d. (3, 8) is neither a local maximum or minimum.
- 4. a. 24; above
 - b. 4; above
 - c. $-\frac{9}{100\sqrt{10}}$; below
 - d. $-\frac{2}{27}$; below
- 5. a. i. concave up on x < 1,
 - concave down on x > 1
 - ii. x = 1

10. a = -3, b = 9, c = -1

