5.6 The Derivatives of Logarithms

We will consider two "types" of logarithms: The Natural Logarithm (with base e), and The General Logarithm (with base b). We'll begin with...

The Derivative of The Natural Logarithm

Given $y = \ln(x)$, determine $\frac{dy}{dx} = y'$

We know something don't the inverse of laws!

Given y= ln(x), invert to an exponential equation

Note: It's always a good idea to work with things you already know about.

For example we know a lot about the derivative of the **natural exponential** function!

=> e = > c (*)

Take the derivative of both sides with a

 $\frac{d}{dx}(e^{y}) = \frac{d}{dx}(x)$

 $e^{y} \cdot y' = 1$ $\Rightarrow y' = \frac{1}{e^{y}}$

But et = x by 141

95

The Chain Rule:

_ composite for

Given $f(x) = \ln(g(x))$, then

 $\int_{(x)^{2}}^{1} \frac{1}{g(x)} \cdot g(x) = \frac{g(x)}{g(x)}$

Example 5.6.1

a) Differentiate $y = \ln(\sin(x))$

$$\int_{-\infty}^{\infty} \frac{\cos(x)}{\sin(x)} = \cot(x)$$

b) Differentiate $f(x) = (\ln(x))^3$

$$\int_{(\lambda)}^{1} = 3 \left(\ln(\lambda) \right)^{2} \cdot \frac{1}{\lambda}$$

c) Differentiate
$$y = \ln(x^3)$$
 2 METHODS
 3 Simplify first
 $4 = \frac{3}{2}$
 $4 = \frac{3}{2}$

The Derivative of The General Logarithm

Given
$$y = \log_{b}(x)$$
, determine $\frac{dy}{dx}$.

Invert

$$\frac{\partial}{\partial x} \left(\frac{1}{5} \right)^{\gamma} = \frac{\partial}{\partial x} \left(x \right)$$

$$\int_{a}^{b} \int_{a}^{b} \ln(b) \cdot y' = 1$$

$$\int_{a}^{b} \int_{a}^{b} \ln(b) = \frac{1}{2a \cdot \ln(b)}$$

Example 5.6.2

Differentiate $g(t) = \log_5(3t^2)$

$$g(t) = \frac{1}{3t^2 \cdot ln(s)}$$

$$= \frac{Cet}{3t^2 \cdot ln(s)}$$

$$= \frac{2}{t \cdot ln(s)}$$

Class/Homework for Section 5.6

Pg. 575 #3abc, 4def, 5, 6, 10