5.1 The Derivative of the Natural Exponential

Problems take from the Nelson Text - Pg. 232 - 233

2. Differentiate each of the following:

a.
$$y = e^{3x}$$

c.
$$y = 2e^{10t}$$

e.
$$y = e^{5-6x+x^2}$$

b.
$$s = e^{3t-5}$$

d.
$$y = e^{-3x}$$

f.
$$y = e^{\sqrt{x}}$$

3. Determine the derivative of each of the following:

a.
$$y = 2e^{x^3}$$

$$c. f(x) = \frac{e^{-x^3}}{x}$$

c.
$$f(x) = \frac{e^{-x^3}}{x}$$
 e. $h(t) = et^2 + 3e^{-t}$

b.
$$y = xe^{3x}$$

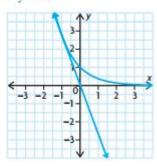
d.
$$f(x) = \sqrt{x}e^x$$

f.
$$g(t) = \frac{e^{2t}}{1 + e^{2t}}$$

- 4. a. If $f(x) = \frac{1}{3}(e^{3x} + e^{-3x})$, calculate f'(1).
 - b. If $f(x) = e^{-\left(\frac{1}{x+1}\right)}$, calculate f'(0).
 - c. If $h(z) = z^2(1 + e^{-z})$, calculate h'(-1).
- 6. Determine the equation of the tangent to the curve $y = e^{-x}$ at the point where x = -1. Graph the original curve and the tangent.
- 9. If $y = \frac{5}{2}(e^{\frac{x}{5}} + e^{-\frac{x}{5}})$, prove that $y'' = \frac{y}{25}$.
- Determine the first and second derivatives of each function.

a.
$$y = -3e^x$$

b.
$$y = xe^{2x}$$


c.
$$y = e^x(4 - x)$$

- 12. The number, N, of bacteria in a culture at time t, in hours, is $N(t) = 1000[30 + e^{-\frac{t}{30}}]$
 - a. What is the initial number of bacteria in the culture?
 - b. Determine the rate of change in the number of bacteria at time t.
 - c. How fast is the number of bacteria changing when t = 20?
 - d. Determine the largest number of bacteria in the culture during the interval 0 ≤ t ≤ 50.
 - e. What is happening to the number of bacteria in the culture as time passes?
- 13. The distance s, in metres, fallen by a skydiver t seconds after jumping (and before the parachute opens) is $s = 160(\frac{1}{4}t 1 + e^{-\frac{t}{4}})$.
 - a. Determine the velocity, v, at time t.
 - b. Show that acceleration is given by $a = 10 \frac{1}{4}v$.
 - c. Determine $v_T = \lim_{t \to \infty} v$. This is the "terminal" velocity, the constant velocity attained when the air resistance balances the force of gravity.
 - d. At what time is the velocity 95% of the terminal velocity? How far has the skydiver fallen at that time?

Answers to Selected Problems

- 3. a. $6x^2e^{x^3}$
 - b. $e^{3x}(3x + 1)$ c. $\frac{-3x^2e^{-x^3}(x) - e^{-x^3}}{x^2}$
 - **d.** $\sqrt{x}e^x + e^x \left(\frac{1}{2\sqrt{x}}\right)$
 - e. $2te^{t^2} 3e^{-t}$
 - f. $\frac{2e^{2t}}{(1+e^{2t})^2}$

6. ex + y = 0

- 12. a. 31 000
 - **b.** $-\frac{100}{3}e^{-\frac{t}{30}}$
 - c. -17 bacteria/h
 - **d.** 31 000 at time t = 0
 - e. The number of bacteria is constantly decreasing as time passes.