5.2 The Derivative of the General Exponential

These problems taken from the Nelson Text – Pg. 240.

Differentiate each of the following functions:

a.
$$y = 2^{3x}$$

d.
$$w = 10^{(5-6n+n^2)}$$

b.
$$y = 3.1^x + x^3$$

e.
$$y = 3^{x^2+2}$$

c.
$$s = 10^{3t-5}$$

f.
$$y = 400(2)^{x+3}$$

2. Determine the derivative of each function.

a.
$$y = x^5 \times (5)^x$$

c.
$$v = \frac{2^t}{t}$$

b.
$$y = x(3)^{x^2}$$

$$d. f(x) = \frac{\sqrt{3^x}}{x^2}$$

3. If $f(t) = 10^{3t-5} \times e^{2t^2}$, determine the values of t so that f'(t) = 0.

4. Determine the equation of the tangent to $y = 3(2^x)$ at x = 3.

5. Determine the equation of the tangent to $y = 10^x$ at (1, 10).

6. A certain radioactive material decays exponentially. The percent, P, of the material left after t years is given by $P(t) = 100(1.2)^{-t}$.

Determine the half-life of the substance.

b. How fast is the substance decaying at the point where the half-life is reached?

Answers to Selected Problems

1. a. $3(2^{3x})\ln 2$

b.
$$\ln 3.1(3.1)^x + 3x^2$$

c.
$$3(10^{3t-5})\ln 10^{3t-5}$$

d.
$$(-6 + 2n)(10^{5-6n+n^2})\ln 10^{6n+n^2}$$

e.
$$2x(3^{x^2+2})\ln 3$$

f.
$$400(2)^{x+3} \ln 2$$

b.
$$(3)^{x^2}[(2x^2 \ln 3) + 1]$$

c.
$$-\frac{2^t}{t^2} + \frac{2^t \ln 2}{t}$$

d.
$$\frac{3^{\frac{4}{3}}[x \ln 3 - 4]}{r^3}$$

3.
$$-\frac{3 \ln 10}{4}$$

a.
$$3(2^{3x})\ln 2$$
b. $\ln 3.1(3.1)^x + 3x^2$
c. $3(10^{3t-5})\ln 10$
d. $(-6+2n)(10^{5-6n+n^2})\ln 10$
2. a. $5^x[(x^5 \times \ln 5) + 5x^4]$
3. $-\frac{3 \ln 10}{4}$
4. $-16.64x + y + 25.92 = 0$
5. $-23.03x + y + 13.03 = 0$
6. a. about 3.80 years

5.
$$-23.03x + y + 13.03 = 0$$