5.4 The Derivatives of Sine and Cosine

These problems are taken from the Nelson text: Pg. 256 – 257

1. Determine $\frac{dy}{dx}$ for each of the following:

a.
$$y = \sin 2x$$

$$y = \sin 2x$$

$$y = 2\cos 3x$$

c.
$$y = \sin(x^3 - 2x + 4)$$

d.
$$y = 2 \cos(-4x)$$

$$e. \ \ y = \sin 3x - \cos 4x$$

f.
$$y = 2^x + 2\sin x - 2\cos x$$

g.
$$y = \sin(e^x)$$

h.
$$y = 3 \sin(3x + 2\pi)$$

i.
$$y = x^2 + \cos x + \sin \frac{\pi}{4}$$

$$j. \quad y = \sin\frac{1}{x}$$

2. Differentiate the following functions:

a.
$$y = 2 \sin x \cos x$$

b.
$$y = \frac{\cos 2x}{x}$$

c.
$$y = \cos(\sin 2x)$$

d.
$$y = \frac{\sin x}{1 + \cos x}$$

e.
$$y = e^x(\cos x + \sin x)$$

$$f. \quad y = 2x^3 \sin x - 3x \cos x$$

3. Determine an equation for the tangent at the point with the given *x*-coordinate for each of the following functions:

a.
$$f(x) = \sin x, x = \frac{\pi}{3}$$

d.
$$f(x) = \sin 2x + \cos x, x = \frac{\pi}{2}$$

b.
$$f(x) = x + \sin x, x = 0$$

e.
$$f(x) = \cos\left(2x + \frac{\pi}{3}\right), x = \frac{\pi}{4}$$

(over)

- Differentiate each function.
 - a. $v(t) = \sin^2(\sqrt{t})$

- c. $h(x) = \sin x \sin 2x \sin 3x$
- b. $v(t) = \sqrt{1 + \cos t + \sin^2 t}$
- d. $m(x) = (x^2 + \cos^2 x)^3$
- 6. Determine the absolute extreme values of each function on the given interval. (Verify your results with graphing technology.)
 - a. $y = \cos x + \sin x$, $0 \le x \le 2\pi$
 - c. $y = \sin x \cos x, x \in [0, 2\pi]$
- 7. A particle moves along a line so that, at time t, its position is $s(t) = 8 \sin 2t$.
 - a. For what values of t does the particle change direction?
 - b. What is the particle's maximum velocity?
- 12. An irrigation channel is constructed by bending a sheet of metal that is 3 m wide, as shown in the diagram. What angle θ will maximize the cross-sectional area (and thus the capacity) of the channel?

Answers to Selected Problems

- 1. a. 2 cos 2x
 - **b.** $-6 \sin 3x$
 - c. $(3x^2 2)(\cos(x^3 2x + 4))$
 - **d.** $8 \sin (-4x)$
 - e. $3\cos(3x) + 4\sin(4x)$
 - f. $2^{x}(\ln 2) + 2\cos x + 2\sin x$
 - g. $e^x \cos(e^x)$
 - **h.** $9\cos(3x + 2\pi)$
 - i. $2x \sin x$
 - j. $-\frac{1}{r^2}\cos\left(\frac{1}{r}\right)$

- - d. $\frac{1}{1+\cos x}$
 - e. $e^x(2\cos x)$
 - **f.** $2x^3 \cos x + 6x^2 \sin x$ $+3x\sin x - 3\cos x$
- 2. **a.** $2 \cos (2x)$ 3. **a.** $-x + 2y + \left(\frac{\pi}{3} \sqrt{3}\right) = 0$ **b.** $-\frac{2 \sin 2x}{x} \frac{\cos 2x}{x^2}$ b. -2x + y = 0 **c.** $-\sin (\sin 2x) \times 2 \cos 2x$ d. $y = -3\left(x \frac{\pi}{2}\right)$

 - e. $y + \frac{\sqrt{3}}{2} = -\left(x \frac{\pi}{4}\right)$

- 5. **a.** $v'(t) = \frac{\sin(\sqrt{t})\cos(\sqrt{t})}{\sqrt{t}}$ **b.** $v'(t) = \frac{-\sin t + 2(\sin t)(\cos t)}{2\sqrt{1 + \cos t + \sin^2 t}}$

 - c. $h'(x) = 3 \sin x \sin 2x \cos 3x$ $+ 2 \sin x \sin 3x \cos 2x$ $+ \sin 2x \sin 3x \cos x$
 - **d.** $m'(x) = 3(x^2 + \cos^2 x)^2$ $\times (2x - 2 \sin x \cos x)$
- **6.** a. absolute max: $\sqrt{2}$, absolute min: $-\sqrt{2}$
 - b. absolute max: 2.26, absolute min: -5.14
 - c. absolute max: $\sqrt{2}$, absolute min: $-\sqrt{2}$
 - d. absolute max: 5, absolute min: -5
- 7. **a.** $t = \frac{\pi}{4} + \pi k, \frac{3\pi}{4} + \pi k$ for positive
 - b. 8
- $12. \quad \theta = \frac{\pi}{2}$