VECTORS

Chapter 6 -Introduction to Vectors

(Material adapted from Chapter 6 of your text)

6.1 An Introduction to Vectors

Definition 6.1.1

A vector is a mathematical object which carries two characteristics:

Geometrically we can think of (or visualize) vectors as directed line segments

Picture

Notes:

Some Basic Notations

- 1) In general we "write" vectors (or algebraically represent vectors):
 - a) With **capital letters** indicating the "**tip**" and "**tail**" **points** of the vector

- b) With a single lower case letter
- 2) We write the **Magnitude** of vectors with "absolute value bars" (KNOW YOUR CONTEXT!)
 - e.g. The magnitude of \vec{a} is given by

The magnitude of \overrightarrow{AB} is

Concerning Magnitude

- a) Magnitude is just a number
- b) The **magnitude** of any vector is always positive (since it represents the **length** of the vector).

- 3) Two vectors \vec{a} and \vec{b} are said to be **equal** (or **equivalent**) if:
 - a)
 - b)

Pictures

4) A scalar is a	(mathematical) quantity which can "scale" vectors (describing size)
Example	es:
N	Magnitude is a
S	Speed is a

Velocity is a

Scalars can "stretch" or "shrink" vectors (in terms of magnitude). Scalars can be negative.

Picture:

Comment

- 5) If $\vec{a} = -\vec{b}$, then we have that
 - a) \vec{a} and \vec{b} are pointing in opposite directions, but

b)
$$\left| \vec{a} \right| = \left| \vec{b} \right|$$

We sometimes call \vec{a} and \vec{b}

Example 6.1.1

Given the vector

Draw a) \vec{b} so that $|\vec{b}| = |\vec{a}|$ but $\vec{b} \neq \vec{a}$

b) \vec{c} so that $\vec{c} = 2\vec{a}$

Example 6.1.2

Using a scale of 1cm = 5km/hr draw a vector which represents 25km/hr $[S60^{\circ}E]$

Class/Homework for Section 6.1 Pg. 279 – 281 #1, 2, 4 – 10