6.2 Vector Addition (and subtraction)

Consider the following:

Fred walks 2.5km E, and then turns 30° toward the North and walks a further 3.2km. How far is Fred from his starting point, and in what direction?

A Vector is the solution to this problem!

There are two approaches to a "geometric representation" of Fred's situation:

Position Diagram Triangle Diagram

Vector Addition

Parallelogram Law	Triangle Law

Solving Fred's Problem

Note: We can use **bearings** to describe direction. Bearings measure angles from N (0 degrees) rotating clockwise. For example, a bearing of 200° looks like:

Vector Subtraction

We can write $\vec{a} - \vec{b}$ as $\vec{a} + \left(-\vec{b}\right)$ and simply use "vector addition".

Example 6.2.1

Given vectors \vec{a} , \vec{b} and \vec{c} , draw:

- i) $\vec{a} + \vec{b}$ ii) $\vec{a} \vec{b}$ iii) $\vec{a} + \vec{b} \vec{c}$

Note: A KEY aspect of vectors is about to be presented to you...pay attention!!

Consider $\vec{a} + (-\vec{a})$

One final note (related to the zero vector):

The Equilibrant (an idea from physics)

Consider the position diagram of forces acting on a (point) body: Draw the **resultant** force, and ask yourself the intriguing question:

"What force would be needed to keep the body from moving?"

Example 6.2.2

Write as a single vector: $\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{DC}$ (hint: draw a picture)

Example 6.2.3

From your text: Pg. 291 #9a

In still water, Maria can paddle at the rate of 7 km/h. The current in which she paddles has a speed of 4 km/h.

a. At what velocity does she travel downstream?

Example 6.2.4

Two vectors \vec{a} $(|\vec{a}| = 3cm)$ and \vec{b} $(|\vec{b}| = 4cm)$ have an angle between them of 80° . Determine $|\vec{a} + \vec{b}|$.

Class/Homework for Section 6.2

Pg. 290 – 292 #1 – 14 (Ex 4 on Pg. 287 is awesome)