VECTORS

Chapter 6 -Introduction to Vectors

(Material adapted from Chapter 6 of your text)

6.1 An Introduction to Vectors

Definition 6.1.1

A vector is a mathematical object which carries two characteristics:

Geometrically we can think of (or visualize) vectors as directed line segments

Picture

Some Basic Notations

- 1) In general we "write" vectors (or algebraically represent vectors):
 - a) With capital letters indicating the "tip" and "tail" points of the vector

b) With a single lower case letter

2) We write the **Magnitude** of vectors with "absolute value bars" (KNOW YOUR CONTEXT!)

e.g. The magnitude of \vec{a} is given by

The magnitude of AB is

- Concerning Magnitude
 - a) Magnitude is just a number b) The **magnitude** of any vector is
 - always positive (since it represents the **length** of the vector).

non-negative

3) Two vectors \vec{a} and \vec{b} are said to be **equal** (or **equivalent**) if:

b) The same direction.

Pictures

4) A scalar is a (mathematical) quantity which can "scale" vectors (describing size)

Examples:

Magnitude is a Scoler ((angle is a number!)

Speed is a scalar (se 45 lun/hr)

Velocity is a Vector (og 45 km/hr [F])
magnitude direction.

Scalars can "stretch" or "shrink" vectors (in terms of magnitude). Scalars can be negative.

Picture:

$$2\vec{a} = \vec{b}$$

or

 $\vec{c} = 2\vec{b}$

Fragalise scalars reverse direction

 $-2\vec{c} = \vec{c}$

or

 $-4\vec{c} = \vec{b}$

Comment

Let $|\dot{z}| = 3|\dot{a}|$ Then $\dot{z} = 3\dot{a}$

Ten 2 = 32 CANNOT BE CONCLUDED become we don't have info, about direction

a. (an we write

100 = 3 = 3 = NO: vectors count equal scalars!

- 5) If $\vec{a} = -\vec{b}$, then we have that
 - a) \vec{a} and \vec{b} are pointing in opposite directions, but

b)
$$\left| \vec{a} \right| = \left| \vec{b} \right|$$

We sometimes call \vec{a} and \vec{b}

opposite vectors

Example 6.1.1

Given the vector

Draw a) \vec{b} so that $|\vec{b}| = |\vec{a}|$ but $\vec{b} \neq \vec{a}$

b)
$$\vec{c}$$
 so that $\vec{c} = 2\vec{a}$

Some direction or à)

Example 6.1.2

Using a scale of 1cm = 5km/hr draw a vector which represents

 $25km/hr \left\lceil S60^{\circ}E\right\rceil$

briowsky Mis is 5 cm long

Class/Homework for Section 6.1 Pg. 279 – 281 #1, 2, 4 – 10