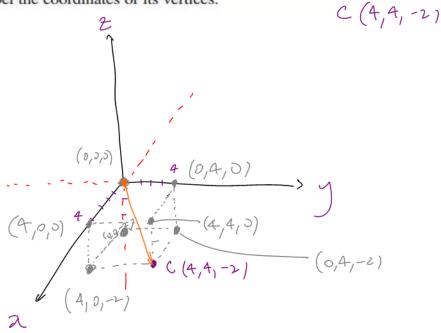
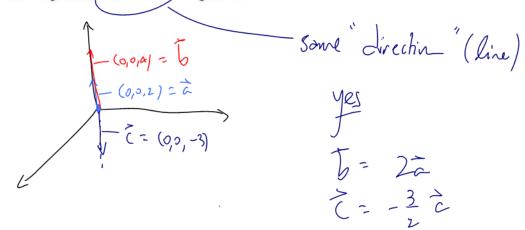
5. Locate the points A(4, -4, -2), B(-4, 4, 2), and C(4, 4, -2) using coordinate axes that you construct yourself. Draw the corresponding rectangular box (prism) for each, and label the coordinates of its vertices.

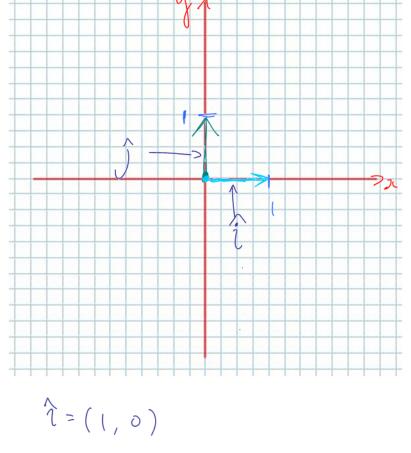


- 7. a. Name three vectors with their tails at the origin and their heads on the z-axis.
 - b. Are the vectors you named in part a collinear? Explain.



6.6 Algebraic Operations with Vectors in \mathbb{R}^2

We will begin by considering two Very Special vectors.



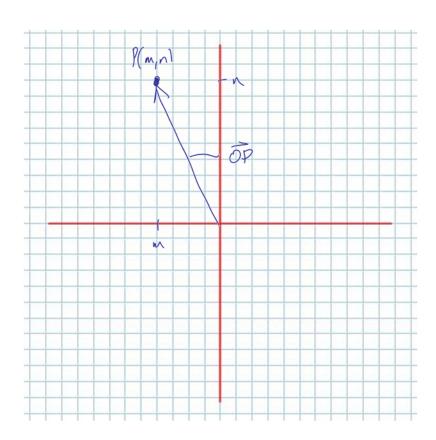
\î = 1

The Standard Unit Vectors are beautiful because they are so easy to "scale". For example, à = 79 consider the vector $\vec{a} = (7,0)$. We can write

Another example would be rewriting $\vec{b} = (0.-3)$ as $\vec{b} = -3$

Consider the general position vector for \mathbb{R}^2 $\overrightarrow{OP} = (m, n)$, (where $m, n \in \mathbb{R}$).

A picture:



$$\widehat{OP} = (m, n) = (m, 0) + (0, n) \in M(1,0) + N(0,1)$$

Huge Insight

All of \mathbb{R}^2 can be obtained, Constructed using the two standard unit vectors We say ANY vector in \mathbb{R}^2 can be uniquely written as a Linear Comination of the standard unit vectors.

Definition 6.6.1

Given rector à: È and scalars m, n

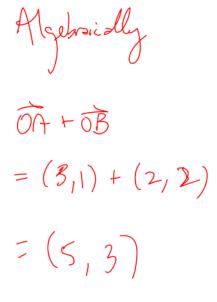
we call the vector $\vec{J} = m\vec{a} + n\vec{b}$ is a linear combos are constructed through sudar multiplication and addition)

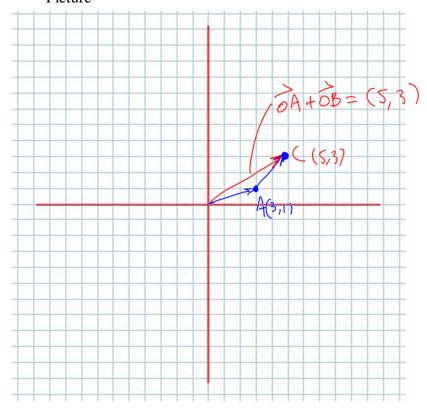
Adding Vectors Algebraically

Example 6.6.1

Given $\overrightarrow{OA} = (3,1)$, and $\overrightarrow{OB} = (2,2)$, determine $\overrightarrow{OA} + \overrightarrow{OB}$

Picture





Note:
We add vectors component-wise

> (>c component + a comparent, y compty y comp

Example 6.6.2

Given $\vec{a} = (3, -5)$, and $\vec{b} = (-8, -2)$, determine:

i)
$$\vec{a} + \vec{b}$$
 ii) $\vec{b} - \vec{a} = (-8 - 3, -2 + 5)$

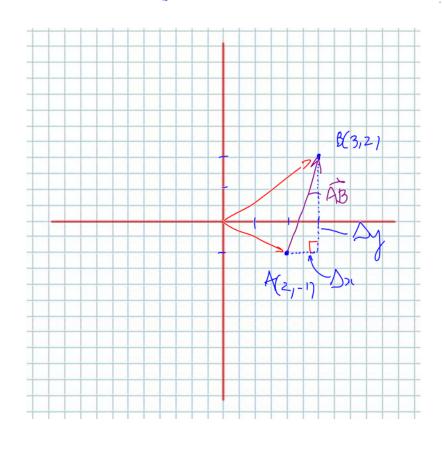
$$= (3 - 8, -5 - 2)$$

$$= (-5, -7)$$

$$= (-11, +3)$$

Example 6.6.3 (this is an important one...well they all are, but this one especially)

Given the **points** A(2,-1) and B(3,2), draw vector \overrightarrow{AB} and determine its **components**.

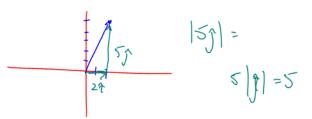


$$\overrightarrow{AB} = (1,3)$$

$$= (3-2, 2-(-1))$$

$$(head minus tarl)$$

Magnitude of a vector algebraically



Consider the position vector $\overrightarrow{OA} = (2,5)$.

$$|\vec{o}A| = \sqrt{2^2 + 5^2}$$

= $\sqrt{29} = 5.4$

In general, for some vector \overrightarrow{AB} with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$

$$|\overrightarrow{AB}| = \left(\left(\chi_2 - \chi_1 \right)^2 + \left(\chi_2 - \chi_1 \right)^2 \right)$$

Consider now a position vector $\vec{a} = (x, y)$

$$\begin{vmatrix} 2 \\ 2 \end{vmatrix} = \sqrt{2^2 + y^2}$$

Example 6.6.4

Given $\vec{a} = (3, -1)$ and $\vec{b} = (-2, 4)$ find $|\vec{a} - 2\vec{b}|$.

$$\vec{a} - 2\vec{b} = (3, -1) - 2(-2, 4)$$

$$= (3, -1) - (-4, 3)$$

$$= (7, -9)$$

$$= (3, -1) - (-4, 3)$$

$$= (7, -9)$$

$$= (3, -1) - (-4, 3)$$

Class/Homework for Section 6.6 Pg. 324 – 326 #1 – 17