14. Given the points A(-2, 1, 3) and B(4, -1, 3), determine the coordinates of the point on the x-axis that is equidistant from these two points.

Let P(0,0,0) Le Me point

|PA| = |PB|

 $|(-2-\alpha, 1, 3)| - |(4-\alpha, -1, 3)|$

 $(-2-a)^2 + 1+9 = (4-a)^2 + 1+9$

4+4a+2 = 16-8a+22

120 = 12

a=1

:- P(1,0,0) is equidished from A's B

6.8 Linear Combinations and Spanning Sets

Given the non collinear vectors \vec{u} and \vec{v} , and the scalars a and b, we can construct a third vector $\vec{w} = a\vec{u} + b\vec{v}$ (we call \vec{w} a linear combination of vectors \vec{u} and \vec{v}).

Picture:

Since \vec{w} is a **linear combination** of \vec{u} and \vec{v} we say that the set of vectors $\{\vec{w}, \vec{u}, \vec{v}\}$ form a **linear dependent set**. Now, because \vec{u} and \vec{v} are **not collinear**, we call the set $\{\vec{u}, \vec{v}\}$ a **linearly independent set**.

Example 6.8.1

Show that $\vec{w} = (2, -1)$ can be written as a linear combination of $\vec{u} = (3, 3)$ and

$$\vec{v} = (1, 2)$$
.

Note: If
$$\vec{\omega}$$
 is a linear combant \vec{v} , \vec

Let
$$\vec{w} = a\vec{n} + b\vec{v}$$
, a,b are sides

$$\Rightarrow$$
 $(2,-1) = \alpha(3,3) + b(1,2)$

$$\Rightarrow$$
 $(2,-1) = (3a,3a) + (6,26)$

$$\Rightarrow$$
 $(2,-1) = (3a+b, 3a+2b)$

$$\frac{1}{3}a + 23 = -1$$
 (9)

$$0 - 0 \Rightarrow b = -3 \text{ sub } b = -3. \text{ inh } 0$$

$$\Rightarrow \alpha = \frac{1}{3}$$

$$\therefore \vec{\omega} = \frac{5}{3}\vec{v} - 3\vec{v}$$

Example 6.8.2

Assum al (2) (prof by Controdiction)

cannot be written as a linear combination of (10)

Show that $\vec{w} = (2, -1)$ cannot be written as a linear combination of $\vec{x} = (1, 3)$ and $\vec{y} = (-2, -6)$.

Assume 3 scalar a? 1 + 12 st.

$$\Rightarrow$$
 $(2,-1) = \alpha(1,3) + b(-2,-6)$

$$0 \times 3 - 0$$
 $0 = 7$ inconsisten

Class/Homework for Section 6.8 (pt. 1)