6.2 Vector Addition (and Subtraction)

Problems taken from the Nelson Text: Pg 290 – 292

1. The vectors \vec{x} and \vec{y} are drawn as shown below. Draw a vector equivalent to each of the following.

- a. $\vec{x} + \vec{y}$ b. $\vec{x} \vec{y}$ c. $\vec{y} \vec{x}$ d. $(-\vec{y}) + (-\vec{x})$
- 7. The rectangular box shown is labelled with $\overrightarrow{OX} = \vec{x}$, $\overrightarrow{OY} = \vec{y}$, and $\overrightarrow{OZ} = \vec{z}$. Express each of the following vectors in terms of \vec{x} , \vec{y} , and \vec{z} .

 a. \overrightarrow{BY} b. \overrightarrow{XB} c. \overrightarrow{OB} d. \overrightarrow{XY} e. \overrightarrow{OQ} f. \overrightarrow{QZ} g. \overrightarrow{XR} h. \overrightarrow{PO}

- 9. In still water, Maria can paddle at the rate of 7 km/h. The current in which she paddles has a speed of 4 km/h.
 - a. At what velocity does she travel downstream?
 - b. Using vectors, draw a diagram that illustrates her velocity going downstream.
 - c. If Maria changes her direction and heads upstream instead, what is her speed? Using vectors, draw a diagram that illustrates her velocity going upstream.

- 11. A small airplane is flying due north at 150 km/h when it encounters a wind of 80 km/h from the east. What is the resultant ground velocity of the airplane?
- 12. $|\vec{x}| = 7$ and $|\vec{y}| = 24$. If the angle between these vectors is 90°, determine $|\vec{x} + \vec{y}|$ and calculate the angle between \vec{x} and $\vec{x} + \vec{y}$.

- 13. \overrightarrow{AB} and \overrightarrow{AC} are two unit vectors (vectors with magnitude 1) with an angle of 150° between them. Calculate $|\overrightarrow{AB} + \overrightarrow{AC}|$.
- 14. ABCD is a parallelogram whose diagonals BD and AC meet at the point E. Prove that $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{0}$.

Answers to Selected Problems

- 7. a. $-\vec{x}$
 - 9. a. 11 km/h
 - b. v
 - c. $\vec{x} + \vec{y}$ d. $-\vec{x} + \vec{y}$

 - e. $\vec{x} + \vec{y} + \vec{z}$
 - f. $-\vec{x} \vec{y}$
 - g. $-\vec{x} + \vec{y} + \vec{z}$
 - h. $-\vec{x} \vec{z}$

c. 3 km/h

- 11. 170 km/h, N28.1°W
- **12.** $|\vec{x} + \vec{y}| = 25, \theta = 73.7^{\circ}$
- 13. 0.52
- 14. The diagonals of a parallelogram bisect each other. So, EA = -ECand $\overrightarrow{ED} = -\overrightarrow{EB}$. Therefore,

 $\overrightarrow{EA} + \overrightarrow{EB} + \overrightarrow{EC} + \overrightarrow{ED} = \overrightarrow{0}.$