6.4 Properties of Vector Addition and Scalar Multiplication

Problems taken from the Nelson text: Pg. 307

- 1. If * is an operation on a set, S, the element x, such that a * x = a, is called the identity element for the operation *.
 - a. For the addition of numbers, what is the identity element?
 - b. For the multiplication of numbers, what is the identity element?
 - c. For the addition of vectors, what is the identity element?
 - d. For scalar multiplication, what is the identity element?
- 3. Redraw the following three vectors and illustrate the associative law.

- 4. With the use of a diagram, show that the distributive law, $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$, holds where $k < 0, k \in \mathbb{R}$.
- 6. ABCDEFGH is a rectangular prism.
 - a. Write a single vector that is equivalent to $\overrightarrow{EG} + \overrightarrow{GH} + \overrightarrow{HD} + \overrightarrow{DC}$.
 - b. Write a vector that is equivalent to $\overrightarrow{EG} + \overrightarrow{GD} + \overrightarrow{DE}$.
 - c. Is it true that $|\overrightarrow{HB}| = |\overrightarrow{GA}|$? Explain.

7. Write the following vector in simplified form:

$$3(\vec{a} - 2\vec{b} - 5\vec{c}) - 3(2\vec{a} - 4\vec{b} + 2\vec{c}) - (\vec{a} - 3\vec{b} + 3\vec{c})$$

8. If $\vec{a} = 3\vec{i} - 4\vec{j} + \vec{k}$ and $\vec{b} = -2\vec{i} + 3\vec{j} - \vec{k}$, express each of the following in terms of \vec{i} , \vec{j} , and \vec{k} .

a.
$$2\vec{a} - 3\vec{b}$$

b.
$$\vec{a} + 5\vec{b}$$

a.
$$2\vec{a} - 3\vec{b}$$
 b. $\vec{a} + 5\vec{b}$ c. $2(\vec{a} - 3\vec{b}) - 3(-2\vec{a} - 7\vec{b})$

9. If $2\vec{x} + 3\vec{y} = \vec{a}$ and $-\vec{x} + 5\vec{y} = 6\vec{b}$, express \vec{x} and \vec{y} in terms of \vec{a} and \vec{b} .

10. If
$$\vec{x} = \frac{2}{3}\vec{y} + \frac{1}{3}\vec{z}$$
, $\vec{x} - \vec{y} = \vec{a}$, and $\vec{y} - \vec{z} = \vec{b}$, show that $\vec{a} = -\frac{1}{3}\vec{b}$.

11. A cube is constructed from the three vectors \vec{a} , \vec{b} , and \vec{c} , as shown below.

a. Express each of the diagonals \overrightarrow{AG} , \overrightarrow{BH} , \overrightarrow{CE} , and \overrightarrow{DF} in terms of \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} .

b. Is
$$|\overrightarrow{AG}| = |\overrightarrow{BH}|$$
? Explain.

Answers to Selected Problems

b.
$$\vec{0}$$

c. Yes, the diagonals of a rectangular prism are of equal length.

7.
$$-4\vec{a} + 9\vec{b} - 24\vec{c}$$

8. a.
$$12\vec{i} - 17\vec{j} + 5\vec{k}$$

b.
$$-7\vec{i} + 11\vec{i} - 4\vec{k}$$

$$\mathbf{c.} = -6\vec{i} + 13\vec{i} - 7\vec{k}$$

9.
$$\vec{x} = \frac{5}{13}\vec{a} - \frac{18}{13}\vec{b}$$
,

$$\vec{y} = \frac{1}{13}\vec{a} + \frac{12}{13}\vec{b}$$
10. $\vec{a} = \vec{x} - \vec{y}$

$$= \frac{2}{3}\vec{y} + \frac{1}{3}\vec{z} - (\vec{b} + \vec{z})$$

$$= \frac{3}{3}\vec{y} - \frac{3}{3}\vec{z} - \vec{b}$$
$$= \frac{2}{3}(\vec{y} - \vec{z}) - \vec{b}$$

$$=\frac{3}{3}\vec{b}-\vec{b}$$

$$=-\frac{1}{3}\vec{b}$$

11. a.
$$\overrightarrow{AG} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$
,

$$\overrightarrow{BH} = -\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c},$$

$$\overrightarrow{CE} = -\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c},$$

$$\overrightarrow{DF} = \overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$$

b.
$$|\overrightarrow{AG}|^2 = |\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2$$

= $|-\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2$

$$|\overrightarrow{AG}| = |\overrightarrow{BH}|$$