
6.6 Algebraic Operations with Vectors in \mathbb{R}^2

These problems taken from the Nelson text: Pg. 324 – 326

- 2. Draw the vector \overrightarrow{OA} on a graph, where point A has coordinates (6, 10).
 - a. Draw the vectors \overrightarrow{mOA} , where $m = \frac{1}{2}, \frac{-1}{2}, 2$, and -2.
 - b. Which of these vectors have the same magnitude?
- 3. For the vector $\overrightarrow{OA} = 3\overrightarrow{i} 4\overrightarrow{j}$, calculate $|\overrightarrow{OA}|$.
- 4. a. If $a\vec{i} + 5\vec{j} = (-3, b)$, determine the values of a and b.
 - b. Calculate |(-3, b)| after finding b.
- 5. If $\vec{a} = (-60, 11)$ and $\vec{b} = (-40, -9)$, calculate each of the following:
 - a. $|\vec{a}|$ and $|\vec{b}|$
- b. $|\vec{a} + \vec{b}|$ and $|\vec{a} \vec{b}|$
- 6. Find a single vector equivalent to each of the following:
 - a. 2(-2,3) + (2,1) b. -3(4,-9) 9(2,3) c. $\frac{-1}{2}(6,-2) + \frac{2}{3}(6,15)$
- 7. Given $\vec{x} = 2\vec{i} \vec{j}$ and $\vec{y} = -\vec{i} + 5\vec{j}$, find a vector equivalent to each of the following:
 - a. $3\vec{x} \vec{y}$
 - b. $-(\vec{x} + 2\vec{y}) + 3(-\vec{x} 3\vec{y})$
 - c. $2(\vec{x} + 3\vec{y}) 3(\vec{y} + 5\vec{x})$
- 8. Using \vec{x} and \vec{y} given in question 7, determine each of the following:
 - a. $|\vec{x} + \vec{y}|$
- b. $|\vec{x} \vec{y}|$
- c. $|2\vec{x} 3\vec{y}|$
- d. $|3\vec{y} 2\vec{x}|$
- 15. A(5,0) and B(0,2) are points on the x- and y-axes, respectively.
 - a. Find the coordinates of point P(a, 0) on the x-axis such that $|\overrightarrow{PA}| = |\overrightarrow{PB}|$.
 - b. Find the coordinates of a point on the y-axis such that $|\overrightarrow{QB}| = |\overrightarrow{QA}|$.

- a. For each of the vectors shown below, determine the components of the related position vector.
 - b. Determine the magnitude of each vector.

- 12. A parallelogram has three of its vertices at A(-1, 2), B(7, -2), and C(2, 8).
 - a. Draw a grid and locate each of these points.
 - b. On your grid, draw the three locations for a fourth point that would make a parallelogram with points A, B, and C.
 - c. Determine all possible coordinates for the point described in part b.
- 13. Determine the value of x and y in each of the following:

a.
$$3(x, 1) - 5(2, 3y) = (11, 33)$$

b.
$$-2(x, x + y) - 3(6, y) = (6, 4)$$

Answers to Selected Problems

4. a.
$$a = -3, b = 5$$

b. 5.83

5. a.
$$|\vec{a}| = 61, |\vec{b}| = 41$$

b.
$$|\vec{a} + \vec{b}| = 100.02$$
, $|\vec{a} - \vec{b}| = 28.28$

b.
$$(-30,0)$$

7. a.
$$7\vec{i} - 8\vec{i}$$

b.
$$3\vec{i} - 51\vec{j}$$

c.
$$-29\hat{i} + 28\hat{j}$$

9. a.
$$\overrightarrow{AB} = (4, 2), \overrightarrow{CD} = (2, 4),$$

 $\overrightarrow{EF} = (-6, 4), \overrightarrow{GH} = (5, 0)$

b.
$$|\overrightarrow{AB}| \doteq 4.47, |\overrightarrow{CD}| \doteq 4.47, |\overrightarrow{EF}| \doteq 7.21, |\overrightarrow{GH}| = 5$$

13. a.
$$x = 7, y = -2$$
 b. $x = -12, y = 4$.

15. a.
$$P\left(\frac{21}{10}, 0\right)$$

b.
$$Q\left(0, -\frac{21}{4}\right)$$