VECTORS

Chapter 7 - Applications of Vectors

(Material adapted from Chapter 7 of your text)

Chapter 7 – Applications of Vectors

Contents with suggested problems from the Nelson Textbook (Chapter 7)

- **7.1 & 7.2 Vectors as Force and Acceleration** *Pg. 133 136* Pg. 279 281 #1, 2, 4 10
- **7.3 The Dot Product: A Geometric View** *Pg 137 139* Pg. 377 378 #1 16
- **7.4 The Dot Product: An Algebraic View** *Pg 140 143* Pg. 385 387 #1 5, 6bc, 7, 9b, 10 13, 14, 15, 17
- **7.5 Projections: Scalar and Vector** *Pg. 144 147*Pg. 398 400 #3, 4, 6 (scalar only), 7 (scalar only)
- **7.5b Projections: Scalar and Vector (2)** *Pg. 148 149* Pg. 398 400 #8, 11, 12, 14, 15
- **7.6 The Cross Product** *Pg.* 150 152

 Pg. 405 Investigation (optional)

 Pg. 407 408 #1, 3, 4def, 5 7, 8a, 11
- **7.7 Applications of the Dot and Cross Products** *Pg. 153 156* Pg. 415 #2, 3, 5, 6, 8, 10

Hose Check & 8.85

15. The vectors \vec{a} and \vec{b} span R^2 . What values of m and n will make the following statement true: $(m-2)\vec{a} = (n+3)\vec{b}$? Explain your reasoning.

Since span(
$$\hat{c},\hat{b}$$
) = \mathbb{R}^2

$$\Rightarrow \exists Scolar \ | +0 \text{ st.} \qquad \hat{c} = k\hat{b} \qquad \text{(ig) } \hat{a} \stackrel{!}{=} \hat{b} \qquad \text{ore not} \qquad \text{(ollinear)}$$

$$\Rightarrow \text{in } (M-2)\hat{a} = (n+3)\hat{b} \qquad \text{(ollinear)}$$

$$M-2 = 0 \qquad \text{ond} \qquad n+3 = 0$$

$$\Rightarrow M=2 \qquad | \qquad n=-3$$

7.1 & 7.2 Vectors as Force and Acceleration

Both **force** and **velocity** are 'real world' qualities which have **magnitude** (size) and **direction**. Thus we can use the mathematics of vectors to solve "real world problems".

Example 7.1.1

A box is being pushed along the floor by Fred and Sally. Fred pushes the box with a force of 35N [right]. Sally pushes with a force of:

a)
$$40N [right]$$

For a) and b) determine i) the resultant force $\overrightarrow{f_r}$ and ii) the equilibrant of the system \overrightarrow{e} .

Example 7.1.2

Given the diagram of a system of forces, determine the resultant force $\overrightarrow{f_r}$, and the equilibrant e.

$$|\int_{1}^{2} | = \left(\frac{35^{2} + 35^{2} - 2(35)(35)}{35} \right) \cos (155)$$

$$\Rightarrow = \frac{5 \ln 0}{35} = \frac{5 \ln 155}{63.47}.$$

$$\Rightarrow = \frac{5 \ln 1}{35} \left(\frac{(35)(5 \ln (155))}{63.47} \right)$$

$$\frac{31/4}{30} = \frac{51/13}{63.47}$$

$$\Rightarrow = \frac{-1}{63.47} \left(\frac{(30)(51/(155))}{63.47} \right)$$

 $: \hat{f} = 63.47N, 11.5^{\circ} \text{ from } \hat{f} : \hat{e} = 63.47N 1185^{\circ} \text{ from}$

Example 7.1.3 Consider the following sketch of a system of forces:

Determine $\overrightarrow{f_r}$.

We will separate all forces into their rectagular components

for, fy (using a chart) ξ= 40.N [w 2° S) ξ= 35 N [ε]

VECTOR	2 component / y component
= 30 N [E 40° N]	$\vec{f}_{12} = 30 \cos(40) = \vec{f}_{12} = 30 \sin(40) = 19.28 $
	= 22.98 (F) = 19.28 [N]
•	$\vec{f}_{2x} = 35 (i) \qquad \vec{f}_{2y} = \vec{0}$
= 40 N [w 205]	$\int_{3\pi}^{2\pi} 40 (3(2)) [w] \int_{3\pi}^{2\pi} 40 sn(20) [5]$ $= 37.59 [w] = 13.68 [5]$
	$ \hat{f}_{r_{r}} ^{2} = 22.98 + 35 - 37.99 \hat{f}_{ry} ^{2} = 19.28 - 13.68 (N) $ $= 20.39 N(E) ^{2} = 5.6 N(N) ^{2}$

Now are need Ir

$$|\vec{f}_{r}| = (|\vec{f}_{r}|^{2} + (|\vec{f}_{rg}|)^{2})^{2}$$

$$= (20.39)^{2} + (5.6)^{2}$$

$$= 21.14 \text{ N}$$

direction

$$ta_{-}\phi = \frac{5.6}{20.39}$$

$$\Rightarrow \phi = \int_{2}^{1} \left(\frac{5.6}{20.39} \right)$$

= 15.4°

Another look at Equilibrium

equilibrium

Recall that a system of vectors in can be represented by two "opposite" vectors:

Example 7.1.4

Given that three forces $\overrightarrow{f_1}$, $\overrightarrow{f_2}$, and $\overrightarrow{f_3}$ are in equilibrium, with $\overrightarrow{f_1}$ and $\overrightarrow{f_2}$ as shown, determine \overrightarrow{f}_3 (as a sketch).

Note: A system in equilibrium her no resultant"

ig fi + fi + fs = 5

resultail

Class/Homework for Section 7.1

Pg. 362 – 364 #2 – 6, 8, 9, 15,

Pg. 369 – 370 #2 – 4, 6, 7, 9, 11