7.7 Applications of the Dot and Cross Products

Given two non collinear vectors $\vec{a}, \vec{b} \in \mathbb{R}^3$, with $\vec{a} = (a_1, a_2, a_3)$, and $\vec{b} = (b_1, b_2, b_3)$ then: (with I being the angle between a: 5)

Dot Product

Geometric Form

à. 5 = | à | [cos(0)

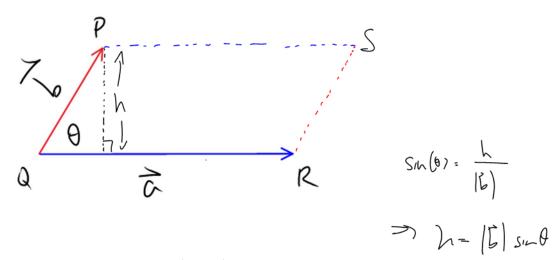
a.T = a, b, + azbz + azbz

Cross Product

Geometric Form

Algebraic Form

 $\frac{1}{a_{1}} = (a_{2}b_{3} - a_{3}b_{2}, a_{3}b_{1} - a_{1}b_{3}, a_{1}b_{2} - a_{2}b_{1})$


bese bell shiples

Consider the fact that $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta)$ (see Pg. 411 for a proof). Further consider a **unit** vector \hat{n} perpendicular to the plane containing \vec{a} and \vec{b} . Then the geometric form of $\vec{a} \times \vec{b}$ is

 $\overline{a} \times \overline{b} = (|\overline{a}||\overline{b}| \sin(\theta)) \widehat{n}$

gometri form of

Consider the following picture (note: $\vec{a}, \vec{b} \in \mathbb{R}^3$):

The parallelogram arising from the vectors \vec{a} and \vec{b} has an area given by:

$$A = b \times h$$

$$= |a||b| \sin \theta$$

$$= |a \times b|$$

$$= |a \times b|$$

Example 7.7.1

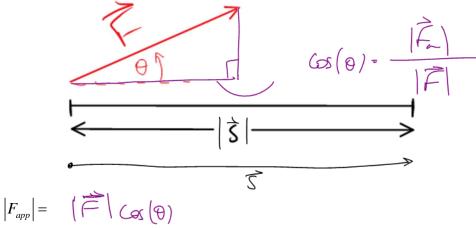
Calculate the area of a triangle with vertices A(2,0,1), B(1,1,2) and C(4,1,3).

$$A = \frac{1}{2} | \overrightarrow{BA} \times \overrightarrow{BC} |$$

$$B = \frac{1}{2} | (1,-1,-1) \times (3,0,1) |$$

$$B = \frac{1}{2} | (1,-1,-1) \times (3,0,1) |$$

$$E = \frac{1}{2} | (-1,-4,3) |$$


$$E =$$

Two Applications

Dot Product and Work

on the Irection I mation

Physics tells us that $Work = (Force\ applied)(displacement)$. Consider the picture:

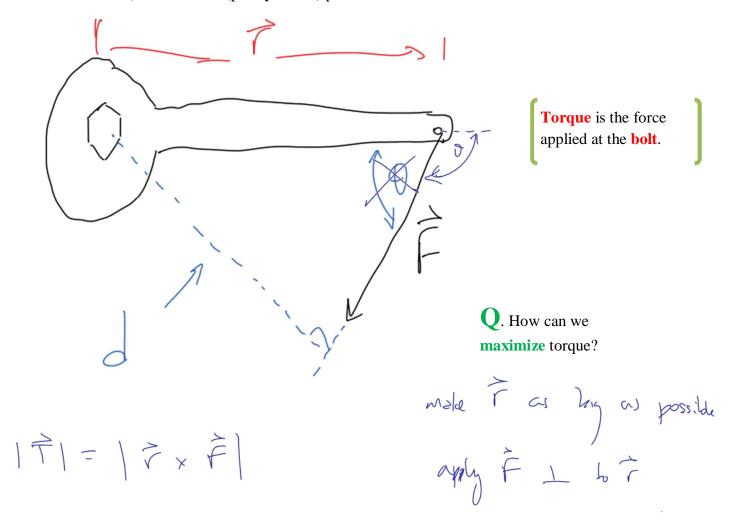
$$|F_{app}| = |F| |G|$$

Thus

$$W = |\vec{F}| cos(0) |\vec{S}|$$

$$= |\vec{F}| |\vec{S}| cos(0) = |\vec{F} \cdot \vec{S}|$$

Example 7.7.2


From your text: Pg. 415 #3b

Calculate the amount of work done when a 40kg rock falls 40m down a slope at 50° to the vertical.

$$W = \vec{F} \cdot \vec{S}$$

= $|\vec{F}| |\vec{S}| \cos(50)$
= $(392)(40) \cos(50)$
= 10079 Jowles

Cross Product and Torque

Torque is the "twisting" force around a turning point. (e.g. the force on a bolt by a wrench.) Consider the (poorly drawn) picture:

Class/Homework for Section 7.7 Pg. 415 #2, 3, 5, 6, 8, 10