7.3 The Dot Product: Geometric View

These problems taken from the Nelson Text: Pg. 377 - 378

- 2. Explain why the calculation $(\vec{a} \cdot \vec{b}) \cdot \vec{c}$ is not meaningful.
- 3. A student writes the statement $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$ and then concludes that $\vec{a} = \vec{c}$. Construct a simple numerical example to show that this is not correct if the given vectors are all nonzero.
- 4. Why is it correct to say that if $\vec{a} = \vec{c}$, then $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c}$?
- 5. If two vectors \vec{a} and \vec{b} are unit vectors pointing in opposite directions, what is the value of $\vec{a} \cdot \vec{b}$?
- 6. If θ is the angle (in degrees) between the two given vectors, calculate the dot product of the vectors.

a.
$$|\vec{p}| = 4$$
, $|\vec{q}| = 8$, $\theta = 60^{\circ}$

b.
$$|\vec{x}| = 2$$
, $|\vec{y}| = 4$, $\theta = 150^{\circ}$

c.
$$|\vec{a}| = 0$$
, $|\vec{b}| = 8$, $\theta = 100^{\circ}$

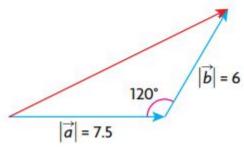
7. Calculate, to the nearest degree, the angle between the given vectors.

a.
$$|\vec{x}| = 8$$
, $|\vec{y}| = 3$, $\vec{x} \cdot \vec{y} = 12\sqrt{3}$ d. $|\vec{p}| = 1$, $|\vec{q}| = 5$, $\vec{p} \cdot \vec{q} = -3$

d.
$$|\vec{p}| = 1, |\vec{q}| = 5, \vec{p} \cdot \vec{q} = -3$$

b.
$$|\vec{m}| = 6, |\vec{n}| = 6, \vec{m} \cdot \vec{n} = 6$$

8. For the two vectors \vec{a} and \vec{b} whose magnitudes are shown in the diagram below, calculate the dot product.



11. The vectors $\vec{a} - 5\vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular. If \vec{a} and \vec{b} are unit vectors, then determine $\vec{a} \cdot \vec{b}$.

12. If \vec{a} and \vec{b} are any two nonzero vectors, prove each of the following to be true:

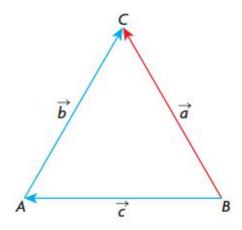
a.
$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2$$

b.
$$(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 - |\vec{b}|^2$$

13. The vectors \vec{a} , \vec{b} , and \vec{c} satisfy the relationship $\vec{a} = \vec{b} + \vec{c}$.

a. Show that
$$|\vec{a}|^2 = |\vec{b}|^2 + 2\vec{b} \cdot \vec{c} + |\vec{c}|^2$$
.

- b. If the vectors \vec{b} and \vec{c} are perpendicular, how does this prove the Pythagorean theorem?
- 14. Let \vec{u} , \vec{v} , and \vec{w} be three mutually perpendicular vectors of lengths 1, 2, and 3, respectively. Calculate the value of $(\vec{u} + \vec{v} + \vec{w}) \cdot (\vec{u} + \vec{v} + \vec{w})$.
- 15. Prove the identity $|\vec{u} + \vec{v}|^2 + |\vec{u} \vec{v}|^2 = 2|\vec{u}|^2 + 2|\vec{v}|^2$.
- 16. The three vectors \vec{a} , \vec{b} , and \vec{c} are of unit length and form the sides of equilateral triangle ABC such that $\vec{a} \vec{b} \vec{c} = \vec{0}$ (as shown). Determine the numerical value of $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b} + \vec{c})$.



Answers to Selected Problems

- 2. $\vec{a} \cdot \vec{b}$ is a scalar, and a dot product is only defined for vectors.
- 3. Answers may vary. For example, let $\vec{a} = \hat{i}, \vec{b} = \vec{j}, \vec{c} = -\vec{i} \ \hat{i} \cdot \vec{a} \cdot \vec{b} \cdot \vec{b} = 0,$ $\vec{a} \cdot \vec{c} \cdot \vec{c} = 0$, but $\vec{a} = -\vec{c}$.
- 4. $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} = \vec{b} \cdot \vec{c}$ because $\vec{c} = \vec{a}$
- 5. -1
- 6. a. 16
 - **b.** −6.93 **c.** 0
- 7. **a.** 30° **8.** 22.5 **b.** 80°
 - c. 53°
 - **d.** 127°

- **11.** 1
- 15. $|\vec{u} + \vec{v}|^2 + |\vec{u} \vec{v}|^2$ = $(\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$ + $(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$
 - $= |\vec{u}|^2 + 2\vec{u} \cdot \vec{v} + |\vec{v}|^2 + |\vec{u}|^2$ $- 2\vec{u} \cdot \vec{v} + |\vec{v}|^2$
 - $= 2|\vec{u}|^2 + 2|\vec{v}|^2$
- 16.