7.5 Projections: Scalar and Vector

These Problems taken from the Nelson Text: Pg. 398 – 400

- 3. Consider two nonzero vectors, \vec{a} and \vec{b} , that are perpendicular to each other. Explain why the scalar and vector projections of \vec{a} on \vec{b} must be 0 and $\vec{0}$, respectively. What are the scalar and vector projections of \vec{b} on \vec{a} ?
- 5. Using the formulas in this section, determine the scalar and vector projections of $\overrightarrow{OP} = (-1, 2, -5)$ on \overrightarrow{i} , \overrightarrow{j} , and \overrightarrow{k} . Explain how you could have arrived at the same answer without having to use the formulas.
- 6. a. For the vectors $\vec{p} = (3, 6, -22)$ and $\vec{q} = (-4, 5, -20)$, determine the scalar and vector projections of \vec{p} on \vec{q} .
 - b. Determine the direction angles for \vec{p} .
- 7. For each of the following, determine the scalar and vector projections of \vec{x} on \vec{y} .

a.
$$\vec{x} = (1, 1), \vec{y} = (1, -1)$$

b.
$$\vec{x} = (2, 2\sqrt{3}), \vec{y} = (1, 0)$$

c.
$$\vec{x} = (2, 5), \vec{y} = (-5, 12)$$

- 8. a. Determine the scalar and vector projections of $\vec{a} = (-1, 2, 4)$ on each of the three axes.
 - b. What are the scalar and vector projections of m(-1, 2, 4) on each of the three axes?
- 12. In the diagram shown, $\triangle ABC$ is an isosceles triangle where $|\vec{a}| = |\vec{b}|$.
 - a. Draw the scalar projection of \vec{a} on \vec{c} .
 - b. Relocate \vec{b} , and draw the scalar projection of \vec{b} on \vec{c} .
 - c. Explain why the scalar projection of \vec{a} on \vec{c} is the same as the scalar projection of \vec{b} on \vec{c} .

- 15. a. If α , β , and γ represent the direction angles for vector \overrightarrow{OP} , prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.
 - b. Determine the coordinates of a vector \overrightarrow{OP} that makes an angle of 30° with the y-axis, 60° with the z-axis, and 90° with the x-axis.

Answers to Selected Problems

- 3. You are projecting \vec{a} onto the tail of \vec{b} , which is a point with magnitude 0. Therefore, it is $\vec{0}$; the projections of \vec{b}
- 5. scalar projection of \vec{a} on $\vec{i} = -1$, vector projection of \vec{a} on $\vec{i} = -\vec{i}$, scalar projection of \vec{a} on $\vec{j} = 2$, vector projection of \vec{a} on $\vec{j} = 2\vec{j}$, scalar projection of \vec{a} on $\vec{k} = -5$, vector projection of \vec{a} on $\vec{k} = -5\vec{k}$; Without having to use formulae, a projection of (-1, 2, 5) on \vec{i}, \vec{j} , or \vec{k} is the same as a projection of (-1, 0, 0) on \vec{i} , (0, 2, 0) on \vec{j} , and (0, 0, 5) on \vec{k} , which intuitively yields the same result.
- **6.** a. scalar projection: $\frac{\vec{p} \cdot \vec{q}}{|\vec{q}|} = \frac{458}{21}$, vector projection: $\frac{458}{441}(-4, 5, -20)$
 - about 82.5°, about 74.9°, about 163.0°
- a. scalar projection: 0, vector projection: 0
 - scalar projection: 2, vector projection: 2i
 - c. scalar projection: $\frac{50}{13}$, vector projection: $\frac{50}{169}(-5, 12)$

- 8. a. The scalar projection of \$\vec{a}\$ on the x-axis (X, 0, 0) is -1; The vector projection of \$\vec{a}\$ on the x-axis is -\$\vec{i}\$; The scalar projection of \$\vec{a}\$ on the y-axis (0, Y, 0) is 2; The vector projection of \$\vec{a}\$ on the y-axis is 2\$\vec{j}\$; The scalar projection of \$\vec{a}\$ on the z-axis (0, 0, Z) is 4; The vector projection of \$\vec{a}\$ on the z-axis is 4\$\vec{k}\$.
 - b. The scalar projection of $m \vec{a}$ on the x-axis (X, 0, 0) is -m; The vector projection of $m \vec{a}$ on the x-axis is $-m\vec{i}$; The scalar projection of $m \vec{a}$ on the y-axis (0, Y, 0) is 2m; The vector projection $m \vec{a}$ on the y-axis (0, Y, 0) is $2m\vec{j}$; The scalar projection of $m \vec{a}$ on the z-axis (0, 0, Z) is z-axis is z-axis z-axis is z-axis is
 - 12. a. $|\overrightarrow{BD}|$

b. \overrightarrow{BD}

- c. In an isosceles triangle, CD is a median and a right bisector of BA.
- d. Yes