7.6 The Cross Product

The problems taken from the Nelson Text: Pg. 407 – 408

- 1. The two vectors \vec{a} and \vec{b} are vectors in R^3 , and $\vec{a} \times \vec{b}$ is calculated.
 - a. Using a diagram, explain why $\vec{a} \cdot (\vec{a} \times \vec{b}) = 0$ and $\vec{b} \cdot (\vec{a} \times \vec{b}) = 0$.
 - b. Draw the parallelogram determined by \vec{a} and \vec{b} , and then draw the vector $\vec{a} + \vec{b}$. Give a simple explanation of why $(\vec{a} + \vec{b}) \cdot (\vec{a} \times \vec{b}) = 0$.
 - c. Why is it true that $(\vec{a} \vec{b}) \cdot (\vec{a} \times \vec{b}) = 0$? Explain.
- 3. For each of the following calculations, say which are possible for vectors in R^3 and which are meaningless. Give a brief explanation for each.
- a. $\vec{a} \cdot (\vec{b} \times \vec{c})$ c. $(\vec{a} \times \vec{b}) \cdot (\vec{c} + \vec{d})$ e. $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$
- b. $(\vec{a} \cdot \vec{b}) \times \vec{c}$ d. $(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{d})$ f. $\vec{a} \times \vec{b} + \vec{c}$
- 4. Calculate the cross product for each of the following pairs of vectors, and verify your answer by using the dot product.
 - a. (2, -3, 5) and (0, -1, 4)
 - b. (2, -1, 3) and (3, -1, 2)
 - c. (5, -1, 1) and (2, 4, 7)
- 5. If $(-1, 3, 5) \times (0, a, 1) = (-2, 1, -1)$, determine a.
- 6. a. Calculate the vector product for $\vec{a} = (0, 1, 1)$ and $\vec{b} = (0, 5, 1)$.
 - b. Explain geometrically why it makes sense for vectors of the form (0, b, c)and (0, d, e) to have a cross product of the form (a, 0, 0).
- 7. a. For the vectors (1, 2, 1) and (2, 4, 2), show that their vector product is $\vec{0}$.
 - b. In general, show that the vector product of two collinear vectors, (a, b, c)and (ka, kb, kc), is always $\vec{0}$.

8. In the discussion, it was stated that $\vec{p} \times (\vec{q} + \vec{r}) = \vec{p} \times \vec{q} + \vec{p} \times \vec{r}$ for vectors in \mathbb{R}^3 . Verify that this rule is true for the following vectors.

a.
$$\vec{p} = (1, -2, 4), \vec{q} = (1, 2, 7), \text{ and } \vec{r} = (-1, 1, 0)$$

- 11. You are given the vectors $\vec{a} = (2, 0, 0), \vec{b} = (0, 3, 0), \vec{c} = (2, 3, 0),$ and $\vec{d} = (4, 3, 0).$
 - a. Calculate $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$.
 - b. Calculate $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})$.
 - c. Without doing any calculations (that is, by visualizing the four vectors and using properties of cross products), say why $(\vec{a} \times \vec{c}) \times (\vec{b} \times \vec{d}) = \vec{0}$.

Answers to Selected Problems

1. a.

 $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} . Thus, their dot product must equal 0. The same applies to the second case.

- **b.** $\vec{a} + \vec{b}$ is still in the same plane formed by \vec{a} and \vec{b} , thus $\vec{a} + \vec{b}$ is perpendicular to $\vec{a} \times \vec{b}$ making the dot product 0 again.
- c. Once again, $\vec{a} \vec{b}$ is still in the same plane formed by \vec{a} and \vec{b} , thus $\vec{a} \vec{b}$ is perpendicular to $\vec{a} \times \vec{b}$ making the dot product 0 again.

- **4. a.** (-7, -8, -2)
 - **b.** (1, 5, 1)
 - c. (-11, -33, 22)
- 5. 1
- 6. a. (-4,0,0)
 - b. Vectors of the form (0, b, c) are in the yz-plane. Thus, the only vectors perpendicular to the yz-plane are those of the form (a, 0, 0) because they are parallel to the x-axis.
- 7. **a.** $(1, 2, 1) \times (2, 4, 2)$ = (2(2) - 1(4), 1(2) - 1(2),

$$1(4) - 2(2)$$

$$=(0,0,0)$$

b. $(a,b,c) \times (ka,kb,kc)$

$$= (b(kc) - c(kb), c(ka) - a(kc),$$

 $a(kb) - b(ka))$

Using the associative law of multiplication, we can rearrange this:

$$= (bck - bck, ack - ack, abk - abk)$$

$$=(0,0,0)$$

- **11. a.** (0, 0, 6), (0, 0, -6)
 - **b.** (0, 0, 0)
 - c. All the vectors are in the xy-plane. Thus, their cross product in part b. is between vectors parallel to the z-axis and so parallel to each other. The cross product of parallel vectors is 0.