8.2 Cartesian and Symmetric Equations of Lines

Example 8.2.1

162

y= mx+6

Determine vector and parametric equations for the line through $P_0(2,-1)$ and with

direction vector $\overline{m} = (2, -3)$. direction $\stackrel{+}{+}s$ a = 2, b = -3general

vector $\overrightarrow{r} = \overrightarrow{r}_0 + t \overrightarrow{m}$, $t \in \mathbb{R}$ (31,7) = (30,7) + t(3,6) $x = x_0 + at$ $y = y_0 + bt$ $t \in \mathbb{R}$ y = -1 - 3tdirection vector $\overrightarrow{m} = (2,-3)$. direction $\stackrel{+}{+}s$ $\Rightarrow a = 2$, b = -3 $\Rightarrow a = 2$ $\Rightarrow a = 2$

Wait what if we solve both parametric equations for *t*?

Given
$$x = 2+2t$$

$$\Rightarrow t = \frac{x-2}{2}$$

$$\Rightarrow t = \frac{y+1}{-3}$$

$$\Rightarrow \frac{x-2}{2} = \frac{y+1}{-3}$$
Symmetric age of the

In general the symmetric equation for a line (in \mathbb{R}^2) given $P_0(x_0, y_0)$ and $\overrightarrow{m} = (a, b)$ is:

$$\frac{x-36}{a} = \frac{y-y}{b}$$

Problem: If a or $b = 0$ we have no symmetric of

Example 8.2.2

Determine vector, parametric and symmetric equations for the line (in "scalar" form)

$$y = -\frac{2}{3}x + 4 \quad (y = max)$$

$$vector$$

$$y = (3, -2)$$

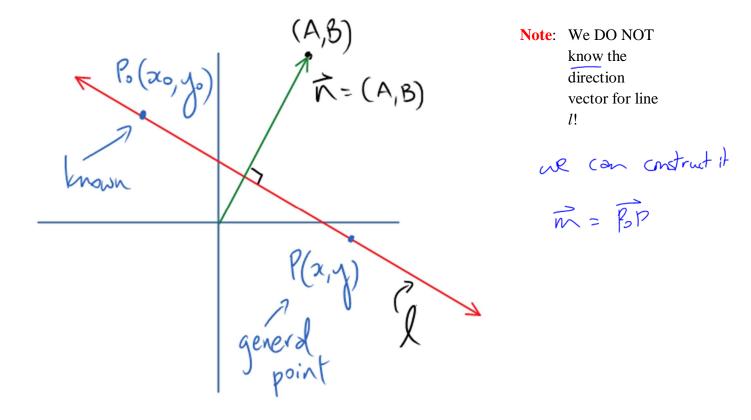
$$vector: \vec{r} = (0, 4) + t (3, -2), ten$$

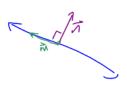
$$y = -\frac{2}{3} \quad y'' \implies \vec{m} = (3, -2)$$

$$y = 4 - 2t$$

The Cartesian Equation of a Line

Consider the following sketch:





Definition 8.2.1

A **normal vector** $\vec{n} = (A, B)$ to a line with direction vector $\vec{m} = (a, b)$

to
$$\vec{m}$$
 (form) in \vec{n} \vec{m} \vec{m} \vec{m} \vec{m} \vec{m} \vec{m} \vec{m} \vec{m}

$$\sqrt{N} \cdot \sqrt{M} = 0$$

Using the info from shore: T= (A,B)

$$(A,B) \circ (x-x_0,y-y_0) = 0$$

$$\widehat{A(x-x_0)} + \widehat{B(y-y_0)} = 0$$

The (aterian of

n = (A,B)

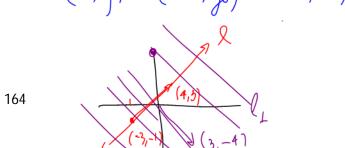
Example 8.2.3

Determine an equation of a line which is perpendicular to (3x-4y+5=0).

We do not have a known point = we Po(20, yo)

$$\vec{n}_{l} \perp l \Rightarrow \vec{m}_{l} = (3, -4)$$

$$\frac{1}{100} = (3, -4)$$
 $\frac{1}{100} = (4, 3)$



$$Ax + By + (=0)$$

$$Ax + 3y + (=0)$$

Example 8.2.4

Determine the Cartesian equation of a line in \mathbb{R}^2 passing through $P_0(5,-2)$ with normal

$$\vec{n} = \begin{pmatrix} 2, -7 \end{pmatrix}$$

Cartesian Ax+ By+
$$C = 0$$
, $\vec{n} = (A,B)$

Coton eyn:
$$2\pi - 7y + C = 0$$
 Use $75(5, -2)$ to find $2(5) - 7(-2) + C = 0 \Rightarrow C = -24$

$$2x - 7y - 24 = 0$$

Example 8.2.5

Given lines

$$l_1:(x,y)=(1,3)+t(2,3)$$

$$l_2:(x,y)=(0,-2)+s(-1,4)$$

Determine the angle between l_1 and l_2 .

$$M_{2}=(-1,+)$$
 $M_{1}=(-2,5)$

$$(OS(\theta) = \frac{\overrightarrow{m}_1 \cdot \overrightarrow{m}_2}{|\overrightarrow{m}_1| |\overrightarrow{m}_2|} = \frac{(2,3) \cdot (-1,4)}{(\sqrt{13})}$$

$$\Rightarrow \theta = \left(\frac{10}{\sqrt{3\chi_{12}}} \right) = 47.7^{\circ}$$

Class/Homework for Section 8.2

Pg. 442 Investigation (whistle a happy tune) Pg. 443 – 444 #1 – 3, 5 – 7, 9, 10, 12

8.3 Lines in Three Space

As in \mathbb{R}^2 , to get an equation for a line we will need two bits of information. We need either:

- A) A known point and a direction vector.
- B) Two known points (from which we get a direction vector).

Note: "Slope" has no real meaning in \mathbb{R}^3 , and so there are no scalar equations in 3-Space!

Vector Equation

A line L passes through the point $P_0(x_0, y_0, z_0)$ and has direction vector $\overrightarrow{m} = (a, b, c)$ determine a vector equation of L.

$$\hat{r} = \hat{r}_0 + \hat{r}_0, f_{cR}$$

$$= (x,y,z) = (x,y,z_0) + t(a,b,c), f_{cR}$$

Parametric Equations

$$2 = 20 + at$$

$$3 = 40 + 6t$$

$$2 = 20 + ct$$

$$4 = 20 + ct$$

Symmetric Equations

Note: If 2 of the direction numbers
$$(a, b, orc)$$
 are zero

No symmetric egin

But if only I direction # is zero (eg b=0)

le symmotric gin is: \(\frac{z-z_0}{a} = \frac{2-20}{c}, y=y

Example 8.3.1

From your text: Pg. 449 #5f

Determine the vector, parametric and symmetric equations for the line passing through the point Q(1,2,4) and which is parallel to the z-axis.

Note: Plere ere no Symmetric eying

vector:
$$\vec{r} = \vec{r}_0 + t \vec{w}$$
, ter

$$\Rightarrow$$
 $(21,4,t) = (1,2,4) + (0,0,1), ten$

$$\begin{array}{c} x = 1 \\ y = 2 \\ z = 4 + t \end{array}$$

Class/Homework for Section 8.3

KNOW the equations for line in 3-Space Pg. 449 – 450 #1, 2, 4 – 6, 8 – 11