VECTORS

Chapter 8 - Equations of Lines and Planes

(Material adapted from Chapter 8 of your text)

8.1 Vector and Parametric Equations of Lines (1)

Recall: A line is a **set of points** $\{(x,y)| y = mx + b\}$ where y = mx + b is a functional relationship between domain and range values.

Consider the sketch of y = 2x - 1:

Problem: Consider a line with a direction vector $\overrightarrow{m} = (1,2)$

Vector Equation of a Line

Consider the sketch of a line through the **known** point (x_0, y_0) with **direction vector** $\overrightarrow{m} = (a,b)$.

Example 8.1.1

Determine a vector equation of the line through A(-1,4) with direction $\overrightarrow{m} = (4,1)$.

We can also write this as:

Note:

Q. Is the point B(5,9) on our line?

Q. Is the vector equation of a line **unique**?

Example 8.1.2

Obtain a vector equation (and parametric equations) for the line passing through the points A(2,5) and B(-1,2).

Example 8.1.3

Determine vector and parametric equations for the line through A(-1,3) and which is perpendicular to the line with vector equation $\vec{r} = (2,1) + t(-2,3)$.

Class/Homework for Section 8.1

Pg. 432 Investigation (smile as you do it)

Pg. 433 – 434 #1 – 3, 5, 6, 9 – 12