9.2 Systems of Linear Equations (Sould)

To solve Systems of Linear Equations we will use the method of *Elimination* first learned (usually) in Grade 10, but we will extend the ideas to techniques required for systems in \mathbb{R}^3 . Before getting to those techniques, it may be useful to recall what is meant by "linear equation".

Derore getting to

$$3x + 2y - 5z - 9 = 0$$
 linear
 $2x - 3y + \sin(z) + 5 = 0$ Not linear "inz"
 $2x + 3xy - 5z + 2 = 0$ not linear

Solving a System of Linear Equations

Consider the system (in \mathbb{R}^2)

$$ax + by = c$$
$$dx + ey = f$$

Note: This system (two equations in 2 unknowns) is either:

has solvis

unknowns) is either: (ansistant

inconsistent no sola

Pictures:

unique solt

consistant

Consistent my wily
many sola

179
(ACSISTENT (AS

Example 9.2.1

Solve the system

$$3x + 2y = 5$$

$$-6x - 4y = -10$$

6x + 4y = 10 3 -6x-4y=-10@ Note: We will be using what we call **Elementary Row Operations** to solve our systems of equations. An **ERO** allows us to construct an equivalent system which is "easy" to solve.

ERO's are:

- Interchanging rows
- Multiplying/Dividing rows by a constant
- Adding/Subtracting one row from another

=> one of our unknowns will be free

On + Oy = 0 =7 0:0 TRUE Consistent system

We want to find a sector egi-

We note that we have I got of 2 unlowers

We want to characterize the free variable with

Set x=t, then y=-3t+2 -'- our soli is (x,y) = (t, -3/2t + 5/2)

(2,4) = (0,3/2) + t(1,-3/2)

180

Definition 9.2.1 (note that this is a basic definition)

A parameter is a measurable factor which defines a "particular" mathematical object.

For example, in the function $f(x) = a(x-h)^2 + k$,

Example 9.2.2

Solve the system \mathbb{R}^3

$$2x + y - 2z = 1$$

$$x + 2y - 5z = 2$$

(3) - (1)

Let y=t

 $71 + 2(t) - 5(\frac{3}{8}t - \frac{3}{3}) = 2$

in our sole is

Note that the two equations to the left represent planes and solving the system is equivalent to finding the intersection of the two planes.

By - 8z = 3 this is as 'good' as we can get we cannot eliminate another

1 eg= -2 wknam

Free variable = princterize

perametric equi of

bereny needs a hug.

Example 9.2.3

Solve the system

$$2x + y - z = 6$$

$$x - y + 2z = -1$$

$$3x + 2y + 3z = 5$$

Goal: Using ERO's we want to construct an equivalent system which looks like:

$$0x + ey + \int_{z}^{z} = g$$

$$3 = 0 \qquad x - y + 2z = -1 (1)$$

$$2x + y - z = 6 (2)$$

$$3x + 2y + 3y = 5 (3)$$

Notes: 1) If after using ERO's our system has a row which looks like:

> O21+04+02=0 2) If after using ERO's we have a

row which looks like:

$$9-6$$
 $0x+0y+16z=-16 8$

Class/Homework for Section 9.2

182

' or sole is
$$(x, y, t) > (2, 1, -1)$$