Vectors: Awesomeness defined

These problems taken from the Nelson Text

Chapter 6 – Pg. 344 – 347

- 4. X(-1, 2, 6) and Y(5, 5, 12) are two points in \mathbb{R}^3 .
 - a. Determine the components of a position vector equivalent to \overrightarrow{YX} .
 - b. Determine the components of a *unit* vector that is in the same direction as \overrightarrow{YX} .
- 5. Find the components of the unit vector with the opposite direction to that of the vector from M(2, 3, 5) to N(8, 1, 2).
- 6. A parallelogram has its sides determined by the vectors $\overrightarrow{OA} = (3, 2, -6)$ and $\overrightarrow{OB} = (-6, 6, -2)$.
 - a. Determine the components of the vectors representing the diagonals.
 - b. Determine the angles between the sides of the parallelogram.
- 7. The points A(-1, 1, 1), B(2, 0, 3), and C(3, 3, -4) are vertices of a triangle.
 - a. Show that this triangle is a right triangle.
 - b. Calculate the area of triangle ABC.
 - c. Calculate the perimeter of triangle ABC.
 - d. Calculate the coordinates of the fourth vertex D that completes the rectangle of which A, B, and C are the other three vertices.
- 8. The vectors \vec{a} , \vec{b} , and \vec{c} are as shown.
 - a. Construct the vector $\vec{a} \vec{b} + \vec{c}$.
 - b. If the vectors \vec{a} and \vec{b} are perpendicular, and if $|\vec{a}| = 4$ and $|\vec{b}| = 3$, determine $|\vec{a} + \vec{b}|$.

11. Calculate the values of a, b, and c in each of the following:

a.
$$2(a, b, 4) + \frac{1}{2}(6, 8, c) - 3(7, c, -4) = (-24, 3, 25)$$

b.
$$2\left(a, a, \frac{1}{2}a\right) + (3b, 0, -5c) + 2\left(c, \frac{3}{2}c, 0\right) = (3, -22, 54)$$

16. The vectors \vec{d} and \vec{e} are such that $|\vec{d}| = 3$ and $|\vec{e}| = 5$, and the angle between them is 30°. Determine each of the following:

a.
$$|\vec{d} + \vec{e}|$$

b.
$$|\vec{d} - \vec{e}|$$

c.
$$|\vec{e} - \vec{d}|$$

- 17. An airplane is headed south at speed 400 km/h. The airplane encounters a wind from the east blowing at 100 km/h.
 - a. How far will the airplane travel in 3 h?
 - b. What is the direction of the airplane?
- 18. a. Explain why the set of vectors: $\{(2,3),(3,5)\}$ spans \mathbb{R}^2 .
 - b. Find m and n in the following: m(2, 3) + n(3, 5) = (323, 795).
- 21. If $\vec{a} = \vec{i} + \vec{j} \vec{k}$, $\vec{b} = 2\vec{i} \vec{j} + 3\vec{k}$, and $\vec{c} = 2\vec{i} + 13\vec{k}$, determine $\left|2\left(\vec{a}+\vec{b}-\vec{c}\right)-\left(\vec{a}+2\vec{b}\right)+3\left(\vec{a}-\vec{b}+\vec{c}\right)\right|.$

Chapter 7 – Pg. 418 – 421

2. Given that \vec{i} , \vec{j} , and \vec{k} represent the standard basis vectors, $\vec{a} = 2\vec{i} - \vec{j} + 2\vec{k}$ and $\vec{b} = 6\vec{i} + 3\vec{j} - 2\vec{k}$, determine each of the following:

a.
$$|\vec{a}|$$

c.
$$|\vec{a} - \vec{b}|$$

e.
$$\vec{a} \cdot \vec{b}$$

b.
$$|\vec{b}|$$

d.
$$|\vec{a} + \vec{b}|$$

c.
$$|\vec{a} - \vec{b}|$$
 e. $\vec{a} \cdot \vec{b}$
d. $|\vec{a} + \vec{b}|$ f. $\vec{a} \cdot (\vec{a} - 2\vec{b})$

- 4. Determine the angle between the vectors $\vec{x} = (4, 5, 20)$ and $\vec{y} = (-3, 6, 22)$.
- 7. An airplane has a speed of 300 km/h and is headed due west. A wind is blowing from the south at 50 km/h. Determine the resultant velocity of the airplane.
- 9. Determine the components of a unit vector perpendicular to (0, 3, -5) and to (2, 3, 1).

- 10. A triangle has vertices A(2, 3, 7), B(0, -3, 4), and C(5, 2, -4).
 - a. Determine the largest angle in the triangle.
 - b. Determine the area of $\triangle ABC$.
- A particle is acted upon by the following four forces: 25 N pulling east, 30 N pulling west, 54 N pulling north, and 42 N pulling south.
 - a. Draw a diagram showing these four forces.
 - b. Calculate the resultant and equilibrant of these forces.
- 14. If \vec{a} and \vec{b} are unit vectors, and $|\vec{a} + \vec{b}| = \sqrt{3}$, determine (Tricky Ask for help) $(2\vec{a} 5\vec{b}) \cdot (\vec{b} + 3\vec{a})$.
- 18. For the vectors $\vec{m} = (\sqrt{3}, -2, -3)$ and $\vec{n} = (2, \sqrt{3}, -1)$, determine the following:
 - a. the angle between these two vectors, to the nearest degree
 - b. the scalar projection of \vec{n} on \vec{m}
 - c. the vector projection of \vec{n} on \vec{m}
 - d. the angle that \overrightarrow{m} makes with the z-axis
- 20. If $\vec{p} = \vec{i} 2\vec{j} + \vec{k}$, $\vec{q} = 2\vec{i} \vec{j} + \vec{k}$, and $\vec{r} = \vec{j} 2\vec{k}$, determine each of the following:

a.
$$\vec{p} \times \vec{q}$$

c.
$$(\vec{p} \times \vec{r}) \cdot \vec{r}$$

b.
$$(\vec{p} - \vec{q}) \times (\vec{p} + \vec{q})$$

d.
$$(\vec{p} \times \vec{q}) \times \vec{r}$$

- 22. Determine the components of a vector that is perpendicular to the vectors $\vec{a} = (3, 2, -1)$ and $\vec{b} = (5, 0, 1)$.
- 30. A 25 N force is applied at the end of a 60 cm wrench. If the force makes a 30° angle with the wrench, calculate the magnitude of the torque.

Chapter 8: Pg. 480 – 483

- a. Determine the vector, parametric, and symmetric equations of the line passing through points A(-3, 2, 8) and B(4, 3, 9).
 - b. Determine the vector and parametric equations of the plane containing the points A(-3, 2, 8), B(4, 3, 9), and C(-2, -1, 3).
 - c. Explain why a symmetric equation cannot exist for a plane.

- 4. Determine the vector, parametric, and symmetric equations of the line passing through the point A(7, 1, -2) and perpendicular to the plane with equation 2x 3y + z 1 = 0.
- 5. Determine the Cartesian equation of each of the following planes:
 - a. through the point P(0, 1, -2), with normal $\vec{n} = (-1, 3, 3)$
 - b. through the points (3, 0, 1) and (0, 1, -1), and perpendicular to the plane with equation x y z + 1 = 0
 - c. through the points (1, 2, 1) and (2, 1, 4), and parallel to the x-axis
- 6. Determine the Cartesian equation of the plane that passes through the origin and contains the line $\vec{r} = (3, 7, 1) + t(2, 2, 3), t \in \mathbb{R}$.
- 8. Determine the Cartesian equation of the plane that contains the line $\vec{r} = (2, 3, 2) + t(1, 1, 4), t \in \mathbb{R}$, and the point (4, -3, 2).
- 9. Determine the Cartesian equation of the plane that contains the following lines:

$$L_1: \vec{r} = (4, 4, 5) + t(5, -4, 6), t \in \mathbf{R}$$
, and $L_2: \vec{r} = (4, 4, 5) + s(2, -3, -4), s \in \mathbf{R}$

- 11. A plane has 3x + 2y z + 6 = 0 as its Cartesian equation. Determine the vector and parametric equations of this plane.
- Calculate the acute angle that is formed by the intersection of each pair of lines.

a.
$$L_1: \frac{x-1}{1} = \frac{y-3}{5}$$
 and $L_2: \frac{x-2}{2} = \frac{1-y}{3}$

b.
$$y = 4x + 2$$
 and $y = -x + 3$

c.
$$L_1$$
: $x = -1 + 3t$, $y = 1 + 4t$, $z = -2t$ and L_2 : $x = -1 + 2s$, $y = 3s$, $z = -7 + s$

d.
$$L_1$$
: $(x, y, z) = (4, 7, -1) + t(4, 8, -4)$ and L_2 : $(x, y, z) = (1, 5, 4) + s(-1, 2, 3)$

24. Determine the parametric equations of the plane that contains the following two parallel lines:

$$L_1$$
: $(x, y, z) = (2, 4, 1) + t(3, -1, 1)$ and

$$L_2$$
: $(x, y, z) = (1, 4, 4) + t(-6, 2, -2)$

- 29. Determine the Cartesian equation of the plane that has normal vector (6, -5, 12) and passes through the point (5, 8, -3).
- 34. Determine the Cartesian equation of the plane that
 - a. contains the point P(-2, 6, 1) and has normal vector (2, -4, 5)
 - b. contains the point P(-2, 0, 6) and the line $\frac{x-4}{3} = \frac{y+2}{-5} = \frac{z-1}{2}$
 - c. contains the point P(3, 3, 3) and is parallel to the xy-plane
 - d. contains the point P(-4, 2, 4) and is parallel to the plane 3x + y 4z + 8 = 0
 - e. is perpendicular to the yz-plane and has y-intercept 4 and z-intercept -2
 - f. is perpendicular to the plane x 2y + z = 6 and contains the line (x, y, z) = (2, -1, -1) + t(3, 1, 2)

Chapter 9: Pg. 552 – 555

- 6. Determine the intersection of the plane 3x 4y 5z = 0 with $\vec{r} = (3, 1, 1) + t(2, -1, 2), t \in \mathbb{R}$.
- 8. Solve each system of equations.

a. 1)
$$3x + 4y + z = 4$$

②
$$5x + 2y + 3z = 2$$

$$3$$
 $6x + 8y + 2z = 8$

b. ①
$$4x - 8y + 12z = 4$$

(2)
$$2x + 4y + 6z = 4$$

$$3$$
 $x - 2y - 3z = 4$

c. ①
$$x - 3y + 3z = 7$$

②
$$2x - 6y + 6z = 14$$

$$3 -x + 3y - 3z = -7$$

12. a. Given the line $\vec{r} = (3, 1, -5) + s(2, 1, 0)$, $s \in \mathbb{R}$, and the plane x - 2y + z + 4 = 0, verify that the line lies on the plane.

- 14. You are given the lines $\vec{r} = (1, -1, 1) + t(3, 2, 1), t \in \mathbf{R}$, and $\vec{r} = (-2, -3, 0) + s(1, 2, 3), s \in \mathbf{R}$.
 - a. Determine the coordinates of their point of intersection.
 - b. Determine a vector equation for the line that is perpendicular to both of the given lines and passes through their point of intersection.
- 19. Determine the point of intersection of the line $\frac{x+1}{-4} = \frac{y-2}{3} = \frac{z-1}{-2}$ and the plane with equation x + 2y 3z + 10 = 0.
- 3. Solve each system of equations.

a. ①
$$x - y + 2z = 3$$

(2)
$$2x - 2y + 3z = 1$$

$$3 \quad 2x - 2y + z = 11$$

b. ①
$$x + y + z = 300$$

②
$$x + y - z = 98$$

$$3x - y + z = 100$$

Cumulative Review: Pg. 557 – 560

- 1. For the vectors $\vec{a} = (2, -1, -2)$ and $\vec{b} = (3, -4, 12)$, determine the following:
 - a. the angle between the two vectors
 - b. the scalar and vector projections of \vec{a} on \vec{b}
 - c. the scalar and vector projections of \vec{b} on \vec{a}
- 3. If \vec{x} and \vec{y} are unit vectors, and the angle between them is 60°, determine the value of each of the following:

a.
$$|\vec{x} \cdot \vec{y}|$$

b.
$$|2\vec{x}\cdot 3\vec{y}|$$

c.
$$|(2\vec{x} - \vec{y}) \cdot (\vec{x} + 3\vec{y})|$$

4. Expand and simplify each of the following, where \vec{i} , \vec{j} , and \vec{k} represent the standard basis vectors in \mathbb{R}^3 :

a.
$$2(\vec{i} - 2\vec{j} + 3\vec{k}) - 4(2\vec{i} + 4\vec{j} + 5\vec{k}) - (\vec{i} - \vec{j})$$

b.
$$-2(3\vec{i}-4\vec{j}-5\vec{k})\cdot(2\vec{i}+3\vec{k})+2\vec{i}\cdot(3\vec{j}-2\vec{k})$$

5. Determine the angle that the vector $\vec{a} = (4, -2, -3)$ makes with the positive x-axis, y-axis, and z-axis.

- 6. If $\vec{a} = (1, -2, 3)$, $\vec{b} = (-1, 1, 2)$, and $\vec{c} = (3, -4, -1)$, determine each of the following:
 - a. $\vec{a} \times \vec{b}$
- c. the area of the parallelogram determined by \vec{a} and \vec{b}
- b. $2\vec{a} \times 3\vec{b}$
- d. $\vec{c} \cdot (\vec{b} \times \vec{a})$
- 7. Determine the coordinates of the unit vector that is perpendicular to $\vec{a} = (1, -1, 1)$ and $\vec{b} = (2, -2, 3)$.
- 11. Determine the value of c such that the plane with equation 2x + 3y + cz 8 = 0 is parallel to the line with equation $\frac{x-1}{2} = \frac{y-2}{3} = z + 1$.

(Not the best worded question in that planes and lines aren't really "parallel". Planes contain vectors which are parallel to lines, though.)

- 18. An airplane heads due north with a velocity of 400 km/h and encounters a wind of 100 km/h from the northeast. Determine the resultant velocity of the airplane.
- 20. a. A line with equation $\vec{r} = (1, 0, -2) + s(2, -1, 2)$, $s \in \mathbb{R}$, intersects the plane x + 2y + z = 2 at an angle of θ degrees. Determine this angle to the nearest degree.
 - b. Show that the planes π_1 : 2x 3y + z 1 = 0 and π_2 : 4x 3y 17z = 0 are perpendicular.
 - c. Show that the planes π_3 : 2x 3y + 2z 1 = 0 and π_4 : 2x 3y + 2z 3 = 0 are parallel but not coincident.
- Two forces, 25 N and 40 N, have an angle of 60° between them. Determine the resultant and equilibrant of these two vectors.
- 25. Solve the following systems of equations:
 - a. 1 x y + z = 2
- C.
- $3 \quad x y + 4z = 5$

② -x + y + 2z = 1

- b. (1) -2x 3y + z = -11
 - (2) x + 2y + z = 2
 - (3) -x y + 3z = -12

- c. ① 2x y + z = -1
 - 2 4x 2y + 2z = -2
 - 3 2x + y z = 5
- d. (1) x y 3z = 1
 - 2x 2y 6z = 2
- 3 -4x + 4y + 12z = -4

- 28. a. If \vec{a} and \vec{b} are unit vectors, and the angle between them is 60°, calculate $(6\vec{a} + \vec{b}) \cdot (\vec{a} 2\vec{b})$.
 - b. Calculate the dot product of $4\vec{x} \vec{y}$ and $2\vec{x} + 3\vec{y}$ if $|\vec{x}| = 3$, $|\vec{y}| = 4$, and the angle between \vec{x} and \vec{y} is 60°.
- 31. A river is 2 km wide and flows at 4 km/h. A motorboat that has a speed of 10 km/h in still water heads out from one bank, which is perpendicular to the current. A marina lies directly across the river, on the opposite bank.
 - a. How far downstream from the marina will the motorboat touch the other bank?
 - b. How long will it take for the motorboat to reach the other bank?
- 34. A crate has a mass of 400 kg and is sitting on an inclined plane that makes an angle of 30° with the level ground. Determine the components of the *weight* of the mass, perpendicular and parallel to the plane. (Assume that a 1 kg mass exerts a force of 9.8 N.)

Answers

See Photocopied Sheets