

Vectors Half (Chapters 6 - 9) – Exam Overview

Congratulations! You have made it through Calculus and Vectors (final exam still to come!) Below is a rough overview of what you are expected to know. Study well! **Read your notes**, and paying attention to **examples**. You have two (and a half) classes to review. Ask questions of me, and your classmates. I want to encourage you to not waste this time.

Geometry of Vectors

- 1. Know the basic characteristics of a vector.
- 2. Be able to add/subtract vectors "geometrically" using the cosine law.

Algebra of Vectors (Note: There are close ties to Geometry with much of these topics)

- 1. Given 4 (algebraic i.e. in component form) vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} in \mathbb{R}^2 or \mathbb{R}^3 , determine:
 - 1. Linear combinations through add/subt/scalar multiplication (be able to use all).
 - 2. Magnitude of \vec{a}
 - 3. Unit vector in the direction of \vec{b}
 - 4. Angle between \vec{c} and \vec{d} .
 - 5. Dot Product of two vectors.
 - 6. Cross Product of two vectors in \mathbb{R}^3 . Why does cross product not work in \mathbb{R}^2 ?
 - 7. Scalar Projections $\left(comp_{\vec{a}}\vec{b}\right)$ and Vector Projections $\left(proj_{\vec{a}}\vec{b}\right)$
- 2. Be able to write vectors as Linear combinations of the Standard Unit Vectors \hat{i} , \hat{j} , and \hat{k} .
- 3. Force is a valid option for an application question.
- 4. Work is a valid option for an applications question.
- 5. Torque is a valid option for an application question.
- 6. Know your Direction Angles and Direction Cosines.
- 7. Vector or scalar?
 - 1. What is the difference?
 - 2. One is nonsense, one is a vector, one is a scalar. Determine which is which...
 - 1. $(\vec{a} \cdot \vec{b}) \times \vec{c}$
 - 2. $\vec{a} \cdot (\vec{b} \times \vec{c})$
 - 3. $(\vec{a} \cdot \vec{b})(\vec{b} \times \vec{c})$
- 8. Span of a Set of Vectors. (And know what a Basis is.)

Lines

- 1. Given the correct info in \mathbb{R}^2 (two points, or a direction vector and a known point), determine vector, parametric, symmetric, and scalar equations of a line.
 - State a normal to the line. State a direction vector of the line. Use dot product to prove these vectors are perpendicular.
- 2. Determine all equations of a line in \mathbb{R}^3 . Why are there no "scalar" equations of lines in \mathbb{R}^3 ?
- 3. What are skew lines?
- 4. The angle between intersecting lines is the same as the angle between their direction vectors.

Planes

- 1. Given points A, B, C, and D, (or two direction vectors, or a direction vector and enough info to get a second direction vector) determine:
 - The Vector, Parametric and Cartesian equations of the plane through the points A, B, C.
 - Why are there no symmetric equations of planes?
 - The Vector equation of the line through a point *D* perpendicular to the plane of the first part.
 - The angle between planes is the same as the angle between their normals.
 - The angle between a line and a plane is $90^{\circ} \theta$, where θ is the angle between the normal of the plane and the direction of the line.

Systems of Equations

- 1. Determine the solutions, if any, the following.
 - Intersecting Lines with Lines and Lines with Planes (you may (probably will) need to "parameterize" your solution set).
 - Systems of Equations (feel free to use Gaussian Elimination or Gauss-Jordan Elimination).

Suggested Review Problems (on Photocopied Pages)

```
Chapter 6 (Vector Basics): Pg. 344 - 347 \#4 - 8, 11, 16, 17, 18, 21
Chapter 7 (Some Applications of Vectors): Pg. 418 - 421 \#2, 4, 7, 9, 10b, 12, 14, 18, 20, 22, 30
Chapter 8 (Equations of Lines and Planes): Pg. 480 - 483 \#3 - 6, 8, 9, 11, 20, 24, 29, 34
Chapter 9 (Intersections and Systems of Equations): Pg. 552 - 555 \#5, 6, 12a (hint: \overrightarrow{m} \cdot \overrightarrow{n}), 13a, 14, 19
```

Cumulative Review: Pg. 557 – 560 #1, 3 – 7, 11, 18, 20, 21, 22, 25ab, 28, 31, 34