

1.4 Inverses of Functions

The inestimable William Groot has a saying:

An Inverse Relation is an UNDO

Definition 1.4.1

A **relation** is simply an algebraic relationship between domain values and range values.

Note: All functions are relations, but not all relations are functions

e.g. $x^2 + y^2 = 25$ is a relation, but it is not a function (it's a circle and so doesn't pass the VLT)

Ref De Note: fin may not be a fin yerse one must switch x:y (Jonan i rape)

Given the graph of f(x) determine: D_f , R_f , $f^{-1}(x)$, $D_{f^{-1}}$, $R_{f^{-1}}$

$$f(x) = \{(2,3), (4,2), (5,6), (6,2)\}$$

$$D_{\xi} = \{2,4,5,6\}$$

$$R_{\xi} = \{3,2,6\}$$

$$f(x) = \{(3,2), (2,4), (6,5), (2,6)\}$$

f(z) is not

$$D_{f^{-1}} = \{3, 2, 6\} = R_f$$
 $R_{f^{-1}} = \{2, 4, 5, 6\} = D_f$

Horizontal Line Test

Consider the Sketches

Consider the Sketches

(AK)

Bleanse the HLT fails

F(n) is vot a fine the VLT BUT it tells us if a fail were is a function of the sketches

HLT pages

F(n) is vot a fine the VLT BUT it tells us if a fail were is a function of the sketches

A function of the sketch

Determining the Inverse of a Function

We can determine the inverse of some given function in either of two ways: Graphically and Algebraically.

Function Inverses Graphically

 $f(n) = \chi^2$

Note: Finding a function inverse graphically is not a very useful method, but it can be instructive.

Note: g(x) is half a parabola.

If fix, had been on a restricted domain (to,0) then fin, would have been a f

Restricting the Domain

Turning points are the problem. Around turning points.
In will FAIL the HLT!

Function Inverses Algebraically

Determining algebraic representations of inverse relations for given functions can be done in (at least) two ways:

- 1) Use algebra in a "brute force" manner (keeping in mind the Big Concept)
- 2) Use Transformations (keeping in mind "inverse operations")

Example 1.4.2

Determine the inverse of $f(x) = 2\sqrt{\frac{1}{3}(x-1)} + 2$.

State the domain and range of both the function and its inverse.

Here we will use "brute force". Method:

- 1) Switch x and f(x), and call "f(x)", $f^{-1}(x)$.
- 2) Solve for $f^{-1}(x)$

$$D_{f} = \begin{bmatrix} 1, \infty \\ 2, \infty \end{bmatrix}$$

$$= 2 \left(\frac{1}{3} \left(\frac{1}{5} (x_{1} - 1)^{-1} + 2 \right) \right)$$

$$= 2 - 2 = 2 \left(\frac{1}{3} \left(\frac{1}{5} (x_{1} - 1)^{-1} \right) \right)$$

$$= 2 \left(2 - 2 \right) = \sqrt{\frac{1}{3} \left(\frac{1}{5} (x_{1} - 1)^{-1} \right)}$$

$$\longrightarrow \left(\frac{1}{2}(\chi-2)\right)^2 = \frac{1}{3}\left(\frac{1}{2}(\chi-1)\right)$$

$$= 3 \left(\frac{1}{2} (n-2) \right)^2 = \int_{-1}^{-1} (n-2)^2 = \frac{1}{2} \left(\frac{1}{2} \right) - \frac{1}{2}$$

$$(x) = 3\left(\frac{1}{2}(x-2)\right)^2 + |$$

Example 1.4.3

Using transformations determine the inverse of $f(x) = 2\sqrt{\frac{1}{3}(x-1)} + 2$.

$$f(x) = 3\left(\frac{1}{2}(x-2)\right)^2 + 1$$

Example 1.4.4

- pregatives stick of their #3
- Determine the inverse of $g(x) = -2(x-1)^2 + 3$.
- Note that the natural domain of g(x) is $(-\infty,\infty)$. However, g(x) does not pass the HLT so its inverse is not a function. Determine a restricted domain for g(x) so that $g^{-1}(x)$ is a function.

$$\bigcirc$$
 $G^{(\alpha)}$

$$\sqrt{\frac{1}{2}(5(-3))} + 1$$

On the interval
$$[1,\infty)$$
or $(-\infty, 7]$

Example 1.4.5

Given
$$f(x) = kx^2 - 3$$
 and given $f^{-1}(5) = 2$, find k.

Two methods:

$$\begin{array}{lll}
\text{Two methods:} & (5,2) \text{ is a pt on } f \\
\text{Two methods:} & \Rightarrow (2,5) \text{ is on } f \\
\text{Use } (5,2) \text{ to find } k & \Rightarrow 4 = \frac{9}{k} & 5 = k(2)^2 - 3 \\
\text{Solution } 2 = \frac{1}{k}(5+3) & k = \frac{8}{4} & k = 2 \\
4 = \frac{1}{k}(8) & \Rightarrow 2 = 2
\end{array}$$