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1.4 Inverses of Functions 
 
The inestimable William Groot has a saying:  
 

An Inverse Relation is an UNDO 
 
Definition 1.4.1 
 A relation is simply an algebraic relationship between domain values and range values. 
 
Note: All functions are relations, but not all relations are functions 
 
 e.g. 2 2 25x y   is a relation, but it is not a function (it’s a circle and so doesn’t pass  
  the VLT) 
 
Consider the Arrow Diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Big Concept 
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Example 1.4.1 
 Given the graph of ( )f x  determine: 1 1

1, ,  ( ), , f f f f
D R f x D R 

   

  
   ( ) (2,3), (4, 2), (5,6), (6,2)f x    

 
 
 
 
 
 
 
 
 
 
 
 

Horizontal Line Test 
 Consider the Sketches 
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Determining the Inverse of a Function 
 
We can determine the inverse of some given function in either of two ways: Graphically and 
Algebraically.  
 
 
Function Inverses Graphically 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Note: Finding a function inverse 
graphically is not a very useful 

method, but it can be instructive. 

Restricting the Domain 
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Function Inverses Algebraically 
 
Determining algebraic representations of inverse relations for given functions can be done in (at 
least) two ways: 
 

1) Use algebra in a “brute force” manner (keeping in mind the Big Concept) 

2) Use Transformations (keeping in mind “inverse operations”) 
 
 
Example 1.4.2 

 Determine the inverse of  1( ) 2 1 2
3

f x x   . 

 State the domain and range of both the function and 
 its inverse.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Example 1.4.3 

 Using transformations determine the inverse of   1( ) 2 1 2
3

f x x   . 

 
 
 
  
 
 

Here we will use “brute force”. 
Method: 

1) Switch  and ( )x f x , and 

call 1" ( )", ( ).f x f x   

2) Solve for 1( )f x    
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Class/Homework for Section 1.4 
   
Pg. 43 – 45 #2 – 4, 7, 9, 12, 13, 15 

Example 1.4.4 
 Determine the inverse of  2( ) 2 1 3g x x    .  

 Note that the natural domain of ( )g x  is  ,  . However, ( )g x  does not pass the HLT 

 so its inverse is not a function. Determine a restricted domain for ( )g x  so that 1( )g x  is a 
 function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 1.4.5 
 2 1Given  ( ) k 3 and given  (5) 2, find k.f x x f      
 
Two methods: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


