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1.5 Piecewise Defined Functions

Some aspects of “reality” exhibit different (as opposed to changing) @[A SOl

To capture those different \ﬂzb\cui-ﬂ/\rg mathematically may require using different

Qﬁ_ /\ka over different ?ef% / ?g@(@s of the domain.

Absolute Value l )

Before discussing piecewise defined functions in general, we will first review the concept of
absolute value.

Definition 1.5.1

The absolute value of a number, X, is given by
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Absolute Value Functions

We can define the function which returns the
absolute value for any given number as
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(Two behaviours!)
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We can go further and define functions which return the absolute value for more complicated
expressions.

e.g. Sketch g(x) = ‘xz —1‘ (note: g(x) takes the absolute value of the functional values for the

“pasic” function f(x)=x*-1)
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(Three functional behaviours)

Absolute Value and Domain Intervals (and Quadratic Inequalities)

e.g.’s Sketch the solution sets of the following inequalities:
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Q'Note the symmetry in part d)! Sometimes it’s useful to think of absolute value as
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Using the above notion we can thus use absolute value to denote the interval -2 < x <2 as

‘Iz < 2
e.g. Solve the quadratic equation
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And now we return our attention to general Piecewise Defined Functions
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Example 1.5.1
You are saving for university, and place $1000 into a sock every six months. After 18
months you wake up and put the money in your sock into an interest bearing bank
account. You continue making deposits. Give a graphical representation of this situation.
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Example 1.5.2

Determine the graphical representation for:

X, xe[-1,2)

f(x)=+2, xe[2,3]
X+1, Xe(3,x)
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Note the notation we use for
piecewise defined functions. Each
functional behaviour has a
mathematical representation,
defined over its own piece of the

domain (just like the Absolute Value

function we considered earlier.

.
\ 7
//
v} 74
//
1 /
4=F j.) ©
J /
) 4 /
> ¥ i
\\*/’
e 3 4 <

24

3 Lebs



Example 1.5.3
Determine a possible algebraic representation which describes the given functional
behaviour.
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Class/Homework for Section 1.5

(Abs. Value.) Pg. 16 #2, 4 — 8 (think about transformations!), 10
(Piecewise) Pg. 51 -53#1-5,7-9
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