2.4a Dividing a Polynomial by a Polynomial

(The Hunt for Factors)

Note: In this course we will almost always be dividing a polynomial by a monomial $(32-1)$
Before embarking, we should consider some "basic" terms (and notation):
thing being divided divisor = quotient + remainder divisor divisor
thing down of division statements
by divisor = dividend = (divisor) (quotient) + remainder

Note: The Divisor and the Quotient will both be

Linder

IF Le Newsond 15 2000

Example 2.4.1

Use **LONG DIVISION** for the following division problem:

$$\frac{5x^4 + 3x^3 - 2x^2 + 6x - 7}{x - 2}$$

turn into a "long division

 $13x^{3} - 26x^{2}$ 24x2 + 62

54x-7 542-108

4 101 write the division statement

Please read Example 1 (Part A) on Pgs. 162 – 163 in your textbook.

BRING DOWN

 $\int_{2}^{4} + 3x^{3} - 2x^{2} + 6x - 7 = (x - 2)(5x^{3} + 13x^{2} + 24x + 54) + 101$

KEY OBSERVATION:

the remainder (R) is not zero (2-2) is NoT a factor of the golynomial

Example 2.4.2

Using Long Division, divide
$$\frac{2x^5 + 3x^3 - 4x - 1}{x - 1}.$$

$$\begin{array}{r}
2x^{4} + 2x^{3} + 5x^{2} + 5x + 1 \\
2x^{5} + 0x^{4} + 3x^{3} + 0x^{2} - 4x - 1 \\
2x^{5} - 2x^{4} \\
2x^{4} + 3x^{3} \\
2x^{4} - 2x^{3}
\end{array}$$

$$\begin{array}{r}
x-1 \\
2x^{5} + 0x^{2} - 4x - 1 \\
2x^{5} + 0x^{2} \\
5x^{3} + 0x^{2}
\end{array}$$

x -1

(every 'pawer' needs to Shaw up)

remainder 20

Division Statement

$$2x^{5} + 3x^{3} - 4x - 1 = (x-1)(2x^{4} + 2x^{3} + 5x^{2} + 5x + 1)$$

KEY OBSERVATION: X-1 is a factor of
$$2x + 3x^3 - 4x - 1$$

(i) 2(2) 15 a zero! Decause remainder is 0

Classwork: Pg. 169 #5 (Yep, that's it for today)