2.5 The Factor Theorem

(Factors have been FOUND)

The Factor Theorem

Given a polynomial function, f(x), then x-a is a

factor of
$$f(x)$$
 IF AND ONLY IF (

Example 2.5.1

Use the Factor Theorem to factor $x^3 + 2x^2 - 5x - 6$.

Let flag = 23+222-52-6 TEST Volues (factors of "6")

$$\pm 1, \pm 2, \pm 3, \pm 6$$
 $+(-1) = 0$

=> (241) is a factor

Use Synk. Division

Consider f(x) in factored form

where f(x) = (x-a)(x-b)(x-c) a,b,c are

Notice |(a)(b)(c)| = |(a)(b)(c)|exist

=> the zeros are factors

of the constant term

Joa Mrs Factor? Yes! (2-2) FACTOR FULLY...

WAIT!!!! We MUST have a

FUNCTION (holy smokes)

3 $3c + 2\pi^2 - (x - 6) = (x + 1)(x^2 + 3c - 6)$

$$= (n+1)(x+3)(n-2)$$

52

Factor **fully** $x^4 - x^3 - 16x^2 + 4x + 48$

Let $f(x) = 2^4 - 2^3 - 16x^2 + 4x + 48$

f(z)=0 (AS soon as you find the zero, write it down) (:. x-2 is a factor)

TEST VALUES (factors 1/48) ±1, ±2, ±3, ±4, ±6, ±8, ±12, ±16, ± 24, ±48

Synthetic Div

2 | 1 -1 -16 4 48 1 2 2 -28 -48 1 1 -14 -24 0 apply the factor theorem to cubic

 $\int_{(x)^{2}} (x^{2} - 2)(x^{3} + x^{2} - 14x - 24)$ Let $g(x) = x^{3} + x^{2} - 14x - 24$ g(-2) = 0 (2+2) is a factor)

no need to test

VALUES

(±), ±2, ±3, ±4, ±6, ±8

Synth Div -2 $\begin{vmatrix}
1 & -1 & -12 & 24 \\
-2 & 2 & 24 \\
-1 & -12 & 2
\end{vmatrix}$

 $(x^4 - x^3 - 16x^2 + 4x + 48 = (x-2)(x+2)(x^2 - x - 12)$ = (x-2)(x+2)(x+3)(x-4)

Example 2.5.3 (*Pg 177 #6c in your text*)

Factor fully
$$x^4 + 8x^3 + 4x^2 - 48x$$

Let
$$f(x) = x^4 + 8x^3 + 4x^2 - 48x$$

= $x(x^3 + 8x^2 + 4x - 48)$

Tat Volves

$$= \chi^{4} + 8\chi^{3} + 4\chi^{2} - 48\chi = \chi(\chi - 2)(\chi^{2} + 10\chi + 24)$$

$$= \chi(\chi - 2)(\chi + 4)(\chi + 6)$$

Example 2.5.4 ($Pg\ 177 \# 10$)

When $ax^3 - x^2 + 2x + b$ is divided by x - 1 the remainder is 10) When it is divided by x - 2 the remainder is 51. Find a and b.

Let
$$f(x) = ax^3 - x^2 + 2x + 1$$

 $f(1) = 10$

$$\rightarrow \alpha(1)^3 - (1)^4 + 2(1) + 5 = 10$$

This problem is very instructive. It brings team of jay to my eyes.

$$f(2) = 5|$$

$$= 3 a(2)^{3} - (2)^{2} + 2(2) + b = 5|$$

b = 3 ((by 0)

use elimination or substitution

to solve the

= a=6

ta = 92

Pg. 176 - 177 #1, 2, 5 - 7 abcd, 8ac, 9, 12 (angels sing over 9 & 12)

(2) - (1)