

Advanced Functions: Chapter Two Test - Polynomial Functions

Multiple Choice

K___/6, T___

Circle (CLEARLY) the choice that best answers the question, AND write the letter of your choice.

- 1. Which of the following statements about a polynomial function is false?
 - a. A polynomial function of degree n has at most n turning points.
 - b. A polynomial function of degree n may have up to n distinct zeros.
 - c. A polynomial function of odd degree must have at least one zero.
 - d. A polynomial function of even degree may have no zeros.
- 2. What is the degree and lead coefficient of $f(x) = -x + 5x^2 6x^3 + 10$?
 - a. degree 1 with a lead coefficient of -1
- c. degree 3 with a lead coefficient of -6
- b. degree 3 with a lead coefficient of -1
- d. degree 6 with a lead coefficient of -1
- 3. What is the equation of the graph shown below?

a. f(x) = (x-4)(x-1)

c. $f(x) = (x+4)^3(x+1)$

b. $f(x) = (x-4)^2(x-1)$

- d. $f(x) = (x-4)^3(x-1)$
- 4. Describe the transformations that were applied to $y = x^3$ to create $y = (\frac{3}{4}(x+3))^3 2$.
 - a. horizontally stretched by a factor of $\frac{4}{3}$, horizontally translated 3 units to the left, and vertically translated 2 units down
 - b. horizontally stretched by a factor of $\frac{3}{4}$, horizontally translated 3 units to the left, and vertically translated 2 units down
 - c. horizontally stretched by a factor of 3, horizontally translated $\frac{4}{3}$ units to the left, and vertically translated 2 units down
 - d. horizontally stretched by a factor of $\frac{3}{4}$, horizontally translated 2 units to the right, and vertically translated 3 units up

5. Which expression is the sum of two cubes?

a.
$$-8x^3 + 64$$

c.
$$9x^3 + 16$$

b.
$$-8x^2 - 64$$

d.
$$25-49v^2$$

6. Write the expression $27x^3 - 1$ in factored form.

a.
$$(3x+1)(3x-1)$$

c.
$$(3x+1)(9x^2-3x+1)$$

b.
$$(9x-1)(81x^2+9x+1)$$

d.
$$(3x-1)(9x^2+3x+1)$$

7. Using end behaviours, and zeros, determine the polynomial equation that represents the graph shown below.

a.
$$g(x) = -4x^3 + 3x + 1$$

c.
$$g(x) = -4x^3 + 2x^2 + 3x + 1$$

b.
$$g(x) = -4x^4 - 3x^3 - 2x^2 + 3x + 1$$

d.
$$g(x) = -4x^3 - 2x^2 + 3x + 1$$

- 8. If any of the linear factors of a polynomial function are squared, then which of the following is not true of the corresponding *x*-intercepts?
 - a. The *x*-intercepts are turning points of the curve.
 - b. The *x*-axis is tangent to the curve at these points.
 - c. The graph passes through the x-axis at these points.
 - d. The graph has a parabolic shape near these *x*-intercepts.
- 9. Which one of the following is not a factor of $f(x) = 2x^3 + 9x^2 + 3x 4$?

a.
$$2x - 1$$

c.
$$x+4$$

b.
$$x-1$$

d.
$$x+1$$

10. What is the remainder when x + 6 is divided into $x^4 - 2x^3 + x^2 + 4x - 25$?

c.
$$-25$$

- Written Solutions: Provide clear solutions to the following problems. Write your solutions in the Answers Booklet. You will receive a *Communications grade*, *out of 10* for how well your math is presented.
 - 11. Without expanding, state the order (degree), the leading coefficient, and the end behaviours of the polynomial function g(x) = x(3x-4)(-2x+1)(x-5). (you may use a "sketch" to describe the end behaviours). **T___/3**

- 12. Given the sketch of the graph of a polynomial function f(x), state:
 - a) whether the function is even or odd ordered (with a reason)
 - b) where the function is increasing
 - c) any maximums and/or minimums.

- 13. Write the equation and sketch an example of a quartic function with the zeros at -4, 2 (order 3), if f(0) = 4. What further information about the polynomial function is needed for an "accurate" sketch of the function's graph? $T_{--}/5$
- 14. Determine the maximum and minimum number of turning points for the polynomial function $g(x) = 4x^4 5x^5 + 2x^2 7$. Give a reason for your answer **K___/2**
- 15. State the Remainder Theorem.
- K___/3
- 16. Divide: $(x^2 6x^4 + 9) \div (x^2 + 2)$.
- T___/4
- 17. Divide $(6x^4 6x^3 + 5x^2 12x + 1) \div (x + 2)$ using synthetic division. **K___/3**
- 18. When $ax^3 x^2 + 3x + b$ is divided by x 2, the remainder is 59. When it is divided by x + 1, the remainder is -1. Find the values of a and b. $A_{--}/4$
- 19. Sketch $f(x) = 2x^4 + 7x^3 + 3x^2 8x 4$, providing as much deatail about the behaviour of the function as possible. Label at least 4 points. **A__/7**