3.2 Linear Inequalities

Once again, it seems a good idea to begin with a couple of opening statements.

Absolutely Non-Silly Opening Statements

- 1) The **algebra** of inequalities is the **SAME** as the algebra on equality (i.e. solving equations), with two exceptions:
 - a) If you MULTIPLY OR DIVIDE A by a negative, then

reverse the direction of the inequality.

b) We can have 2 sided inequalities – e.g.

3-x (5+2x (3

2) The Solution Set of inequalities is infinite. The set is a segment of

Example 3.2.1

Solve the (linear) inequality 3x-2>4.

3x76

Sketch the sola set

The solution set is the set of number which moles the statement true

Example 3.2.2

Solve the two sided inequality $-2 > -4x + 5 \ge -3$.

subtract 5 everywhere

÷ - 4 everywhere

7 < > < > < 2

Example 3.2.3

Solve $5 \le 3(x-2) - 4(x+3) \le 12$

$$5 < 32 - 6 - 42 - 12 < 12$$

5 = -2 - 18 = 12

Solution Set

Example 3.2.4

Write the following sketch of a solution set in interval and set notation:

Figure 3.2.4

Interval

$$\left(-\infty, -4\right)\left(\left[3, \infty\right)\right)$$

Set Nototian

$$\left\{x \in \mathbb{R} \left| -4 \right\rangle x \right\}$$

$$x \in \mathbb{R} \left[-4 \right\rangle x \right\}$$

$$x \in \mathbb{R} \left[-4 \right\rangle x \right\}$$

$$x \in \mathbb{R} \left[-4 \right\rangle x \right\}$$

Graphical Views of (non-linear) Polynomial Inequalities

(the Algebra is tough...)

Example 3.2.5

Consider the sketch of the graph of some mystery cubic function.

Q. When (or better WHERE) are the functional values positive?

Example 3.2.6

Consider the sketch of the quartic g(x), and determine where

- $c) -1 \le g(x) \le 2$

a) $[-4,1)\cup\{3\}$ b) $(-\infty,-5)\cup(5,\infty)$ c) $[-5,-3]\cup[0,5]$

Figure 3.2.6

Class/Homework for Section 3.2

Pg. 213 - 215 #1, 2, 4, 5, 7, 9, 13