

# 3.3 Solving Polynomial Inequalities

For this section, no opening statements are required....

# Non-Required Opening Statement

Solving non-linear polynomial inequalities can be accomplished in two ways:

- 1) Graphically (sometimes called Geometrically)
- 2) Algebraically (which tends to be more useful)

### **Example 3.3.1**

Solve 
$$(2x-1)(x-2)(x+3) \ge 0$$
.

REMEMBER: FACTORED FORM IS YOUR FRIEND

Graphically:

Jant: f(0)= 6



Note: Solving an inequality graphically is rather easy,  ${\color{red} BUT}$ 



(2x-1)(x-2)(x+3) > 0 or

$$\begin{bmatrix} -3, t \end{bmatrix} \left( \begin{bmatrix} 2, \infty \end{bmatrix} \right)$$

# **Example 3.3.1 (Continued)**

Solve  $(2x-1)(x-2)(x+3) \ge 0$ 

## Algebraically

For this technique we will construct an "Interval Chart", which can also be thought of as a "table of signs" (and wonders?)

Note: It is often helpful to remember that in mathematics we are dealing with **NUMBERS**.

Numbers have signs: Positive or Negative

e.g. (x-2) is a **NUMBER** whose sign switches from +'ve to -'ve at x = 2 (i.e. the sign switches at the zero of the factor)

The Interval Chart looks like:

| Intervals                      | Split the Doma     | $\sin (-\infty, \infty)$ at all <b>ZEROS</b> | of the Factors              |
|--------------------------------|--------------------|----------------------------------------------|-----------------------------|
| Test Values                    | Choose a Domain    | value inside each                            | Interval                    |
| Sign on 1 <sup>st</sup> Factor |                    |                                              |                             |
| Sign on 2 <sup>nd</sup> Factor |                    |                                              |                             |
| Sign on 3 <sup>rd</sup> Factor |                    |                                              |                             |
| Sign on the Product of Factors | Find the Intervals | with the sign we                             | want to answer the question |

For our problem above, our chart will look like:

| INTERVALS  | (-∞,-3) | (-3, +2) | (t, 2) | (2, ∞) |   |
|------------|---------|----------|--------|--------|---|
| TEST VAMES | -4      | 0        | (      | 3      |   |
| 243        | ~VL     | tve      | tve    | tre    |   |
| 221-1      | -ve     | -ve      | tvl    | + V    |   |
| フィーと       | -12     | - vl     | - V    | + JR   | , |
| product    | \ -ve   | tre      | - ·    | + 12   |   |

$$(2\lambda-1)(\lambda-2)(\lambda+3)\geq 0 \quad \text{on} \quad \begin{bmatrix} -3, \frac{1}{2} \end{bmatrix}$$

### **Example 3.3.2**

Solve algebraically  $4x^4 + 16x^3 + x^2 - 39x - 18 < 0$ .

Let 
$$f(x) = 4x^4 + 16x^2 + x^2 - 39x - 18$$
  
 $f(-2) = 0$ 

- we have

$$(x+2)(4x^{3}+8x^{2}-15x-9)(0)$$

- we have

$$(\chi+2)(\chi+3)(4\chi^2-4\chi-3) < 0$$

$$\Rightarrow (2(+2)(2+3)(2x-3)(2x+1) < 0$$

nterd chart

Wait a second....where is your friend and mine...

FACTURED FORM

T.U.

RAMONAL FAGUS A (11, 12, 14)

T. J.

who: t = t = t = 1, t = 2, t = 2, t = 4

$$4x^{2} - 6x + 2x - 3$$

$$= 2x(2x-3) + 1(2x-3)$$

$$= (2x-3)(2x+1)$$

-3 -2 -1 369

| INTERVAIS   | $(-\infty, -3)$ | (-3, -2) | (-2,-1) | (-1,3/2) | (3/2, 00) |
|-------------|-----------------|----------|---------|----------|-----------|
| TEST VALUES | -4              | -2.5     | -       | 6        | 2         |
| 2 +3        | -ve             | tre      | tre     | tre      | tre_      |
| 2+2         | -ve             | -ve      | ful     | + ~      | tve       |
| 2x+1        | - &             | - V      | - V     | + vl     | fre       |
| 22-3        | -V              | -vl      | -vl     |          | tul       |
| product     | tue             | 1 -ve    | tve     | -vl      | tvl       |
|             | 1               |          |         | •        |           |

:. 
$$4x^{4} + 16x^{3} + x^{2} - 39x - 18 < 0$$

$$(-3, -2) \cup (-\frac{1}{2}, \frac{3}{2})$$

Class/Homework for Section 3.3 Pg. 225 – 228 #2, 5 – 7, 10 – 13