ADVANCED FUNCTIONS

Chapter 4 – Rational Functions, Equations and Inequalities

(Material adapted from Chapter 5 of your text)

Chapter 4 – Rational Functions, Equations and Inequalities

Contents with suggested problems from the Nelson Textbook (Chapter 5)

- **4.1 Introduction to Rational Functions and Asymptotes** Pg 71 77 Pg. 262 #1 3
- **4.2 Graphs of Rational Functions** *Pg* 78 82
 Pg. 272 #1, 2 (Don't use any tables of values!), 4 6, 9, 10
- 4.3 Basic Rules of Algebra *Pg* 83 85
 Assignment to learn some basic rules of algebra.
- **4.4 Solving Rational Equations** *Pg 86 90* Pg. 285 287 #2, 5 7def, 9, 12, 13
- **4.5 Solving Rational Inequalities** *Pg 91 95* Pg. 295 297 #1, 3, 4 6 (def), 9, 11

4.1 Rational Functions, Domain and Asymptotes

Definition 4.1.1

A Rational Function is of the form $R(\pi) = \frac{1}{9(\pi)}$, $g(\pi) \neq 0$ where p(2) à g(2) are polynomial fois.

e.g.
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is a reliable
$$g(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{2x - 1}$$
 is not a reliable
$$f(x) = \frac{3x^2 - 5x + 1}{3x - 2}$$

Domain

Definition 4.1.2

Given a rational function $f(x) = \frac{p(x)}{q(x)}$, then the **natural domain** of f(x) is given by Dr. (xxR | q(m = 0)

Example 4.1.1

Determine the natural domain of $f(x) = \frac{x^2 - 4}{x - 3}$.

$$\mathcal{D}_{f} = \left\{ x \in \mathbb{R} \mid x \neq 3 \right\}$$
 (set)

OR

$$3c \in (-\infty, 3) \cup (3, \infty)$$
 (interval)

71

Asymptotes

There are 3 possible types of **asymptotes**:

- 1) Vertical Asymptotes
- Horizontal Asymptotes
- Oblique Asymptotes

Vertical Asymptotes

A rational function $f(x) = \frac{p(x)}{q(x)}$ MIGHT have a V.A. when q(x) = 0, but there may be a hole discontinuity instead. A quick bit of algebra will dispense the mystery.

Example 4.1.2

Determine the domain, and V.A., or hole discontinuities for:

a)
$$f(x) = \frac{5x}{x^2 - x - 6}$$

V.A.'s occur when denominator = 6

$$f(x) = \frac{5x}{(x-3)(x+2)}$$

 $\mathcal{D}_{\xi} = \left\{ x \in \mathbb{R} \mid x \neq 3, x \neq -2 \right\}$

$$-1. V.A. \qquad 2=3, \quad z=-2.$$

b)
$$h(x) = \frac{x+3}{x^2-9}$$

$$\int_{N} \left\{ x \in \mathbb{R} \right\} \times \left\{ 3, x \neq -3 \right\}$$

$$V.A.$$

$$\Rightarrow h(x) = \frac{1}{x-3}$$

c)
$$g(x) = \frac{x^2 - 4}{x + 2}$$

$$g(x) = \frac{(x-2)(2(1))}{2(2)}$$

7-2

$$\alpha = -2$$
 is Not $\alpha V.A.$

it's instead, a hole

discontinuity

Horizontal Asymptotes

Here we are concerned with END BEHAVIOUR of the rational for

i.e. We are asking, given a rational function $f(x) = \frac{p(x)}{a(x)}$, how is f(x) behaving as

Now, since p(x) and q(x) are both polynomials, they have an order (degree). We must consider three possible situations regarding their order:

1) Order of p(x) >Order of q(x)

e.g.
$$f(x) = \frac{x^3 - 2}{x^2 + 1}$$
 order 2

Consider
$$\lim_{x\to\infty} \left(\frac{x^3-2}{x^2+1} \right) = \infty$$

2) Order of numerator = Order of denominator

e.g.
$$f(x) = \frac{2x^2 - 3x + 1}{3x^2 + 4x - 5}$$

Consider
$$\lim_{\lambda \to \infty} \left(\frac{2\lambda^2 - 3\lambda + 1}{3\lambda^2 + 4\lambda - 4} \right)$$

e.g. Determine the horizontal asymptote of $g(x) = \frac{3x-4x^5}{5x^5+2x-1}$

e.g. Determine the horizontal asymptote of
$$g(x)$$
 =

- every term by the highest power

 $\lim_{n\to\infty}\left(\frac{1-\frac{2}{2^3}}{\frac{1}{2^3}+\frac{1}{2^3}}\right)=\frac{1}{0}$

 $\int_{10^{2}}^{10^{2}} e^{2x} dx + \int_{10^{2}}^{10^{2}} e^{2x} d$

4= - = vahio of lead coefficients

3) Order of numerator
$$p(x)$$
 < Order of denominator $q(x)$

e.g.
$$f(x) = \frac{x^2 - 5x + 6}{x^5 + 7}$$
 order $\frac{x^2 - 5x + 6}{x^5 + 7}$ order $\frac{x^2 - 5x + 6}{x^5 + 7}$

Oblique Asymptotes

These occur when
$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$$

With Oblique Asymptotes we are still dealing with end what we have the work of the still dealing with end with the still dealing with the

O.A. have the form y = mx + b (shocking, I know!) The question we have to face is this:

How do we find the line representing the O.A.?

Ans: By dividity.

Ans: By dividity.

Privide by Synthetic Divide by
$$\begin{cases} 2^{2}-2n+3 \\ 2n-1 \end{cases}$$

order $\begin{cases} 2^{2}-2n+3 \\ 2n-1 \end{cases}$

order $\begin{cases} 2^{2}-2n+3 \\ 2^{2}-2n+3 \end{cases}$
 $\begin{cases} 2^{2}-2n+3 \\ 2^{2}-2n+3 \end{cases}$

(Rough) Sketch of
$$f(x) = \frac{x^2 - 2x + 3}{x - 1}$$
 order 2

H.A. NONE

O.A.
$$y = x_1 - 1$$

With
$$f(0) = -3$$

Example 4.1.3

Determine the equations of all asymptotes, and any hole discontinuities for:

$$a) f(x) = \frac{x+2}{x^2+3x+2} \qquad \frac{\text{order}}{\text{order}}$$

$$\left\{ (\pi) = \frac{x+2}{(x+2)(x+1)} \qquad \left\{ \frac{1}{x^2+3x+2} \right\} = \left\{ \frac{x+2}{x^2+3x+2} \right\}$$

b)
$$g(x) = \frac{(4x^2 - 25)}{(x^2 - 9)}$$
 or $\frac{2}{\sqrt{2x^2 - 9}}$

$$c) h(x) = \frac{x^2}{x+3} \qquad \frac{\text{order 1}}{\text{order 1}} \qquad \frac{QA}{-3}.$$

$$V.A \qquad HA \qquad Hdes \qquad \frac{-3}{-3} \qquad \frac{9}{-3}$$

$$x = -3 \qquad \text{None} \qquad W = x - 3$$

Example 4.1.4

Determine an equation for a function with a vertical asymptote at x = -3, and a horizontal asymptote at y = 0,

order numerator & order of denom

need (x+3) as a non-carcellable

$$f(x) = \frac{x}{(x+3)^2}$$

$$f(x) = \frac{3c}{(2+3)^2}$$

$$f(x) = \frac{1}{2+3}$$

$$f(x) = \frac{2-5}{(2+3)(x-2)}$$
Example 4.15

Example 4.1.5

Determine an equation for a function with a hole discontinuity at x = 3.

need a cancellable factor (21-3) $f(x) = \frac{x-3}{(x-3)(x+2)}$

Class/Homework for Section 4.1
Pg. 262 #1 - 3