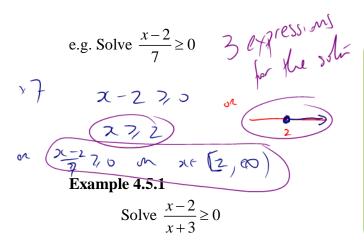
4.5 Solving Rational Inequalities

The joy, wonder and peace these bring is really quite amazing



Note: For Rational Inequalities, with a variable in the denominator, you **CANNOT** multiply by the multiplicative inverse of the common denominator!!!!

Why? Re denominator has a sign, and would be negative

The direction of negative

91

We solve by using an Interval Chart

For the intervals, we split $(-\infty,\infty)$ at all zeros (where the numerator is zero), and all restrictions (where the denominator is zero) of the (SINGLE) rational expression. Keep in mind that it may take a good deal of algebraic manipulation to get a SINGLE rational expression...

Intervals
$$(-\infty, -3)$$
 $(-3, 2)$ $(2, \infty)$

T.V. -4 0 3

 $2-2$ -ve -ve +ve

 $2-2$ -ve +ve +ve

 $2-2$ +ve +ve +ve

 $2-2$ +ve $2-2$ +ve $2-2$ include 2 s.

 $2-2$ -ve $2-2$ +ve $2-2$ include 2 s.

 $2-2$ include 2 s.

Solve
$$\frac{1}{x+5} < 5$$

$$\Rightarrow \frac{1}{3(+7)} - \frac{5}{5} < 0$$

$$\Rightarrow \frac{1}{2+5} - \frac{5(205)}{2+5} < 0$$

$$\Rightarrow \frac{1-5(2+5)}{2+5} < 0$$

$$= 7 - 5x - 24$$

- Get everything on one side
- Simplify into a single Rational Expression using a common denominator
- Interval Chart it up Smyl numer after

	1-4.3						
Interals	(-00, -5)	$\left(-5, -\frac{24}{5}\right)$	$\left(-\frac{14}{5}\right)$				
10	-6	-4.9	0				
-52-L4	tve	tve	-vl				
245	- ٧	+ ve	t ve				
745	-ve	tul	-ve				

Solve
$$\frac{x^2 + 3x + 2}{x^2 - 16} \ge 0$$

FACTORED FORM IS YOUR FRIEND

We need zoos and restrictions!

$$\Rightarrow \frac{(2(+2)(2+1))}{(2-4)(2(+4))} > 0$$

zers:
$$x = -2$$
, -1
restrictions $x \neq 4$, -4

Intervals	(-∞,-A)	(-4, -2)	(-2, -1)	(~1, 4)	(4,∞)
T.V.	-5	-3	- 1.5	O	5
X12	- vl	- vl	the	+ ve	+ VC
2+1	- N	-vl	- vl	tre	t ve
2-4	- J	- vl	-ve	-vl	+ VC
2+4	- V	+ve	+ V	t ve	+ ve
(2+2)(2(+1) (2-4)(2(+1)	+12	- ve	+ VC	-vl	tve
				1	

be coreful of brockets

$$\frac{x^2 + 3x + 12}{x^2 - 16} = 70 \text{ m } x \in (-\infty, -4) \cup [-1, -1] \cup (4, \infty)$$

Sola set statel



Solve
$$\frac{3}{x+2} \le x$$

$$\Rightarrow \frac{3}{312} - \chi \leq 0$$

$$\Rightarrow \frac{3 - \pi(x+2)}{\pi + 2} \leq 0$$

$$= \frac{-x^2 - 2x + 3}{212} \le 0$$

$$\times 120h \text{ sider}$$

$$\frac{x^2 + 2x - 3}{2 + 2} > 0$$

ellininotes le - an 22

$$= \frac{(2+3)(2-1)}{2(+2)} > 0$$

restriction: 22-2

٨				ı		
Intervals 1	(-20,-3)	$\left(-3,-2\right)$	(-2,1)	(1,0)		
T.V.	-4	-2.5	6	2		
243	-ve	+ ve	1~1	tre		
λ -1	-ve	-~	-ve	tre		
2(12	-ve	-ve	1	+4		
(x+3)(x-1)) -ve	1 +ve	-vl-	+~		restriction!
242		\			-2 il 3	, restriction.
	1		1			
	_					

i',
$$\frac{3}{242} \leq x$$
 on $\left[-3, -2\right) \cup \left[1, \infty\right)$

From your Text: Pg. 296 #6a

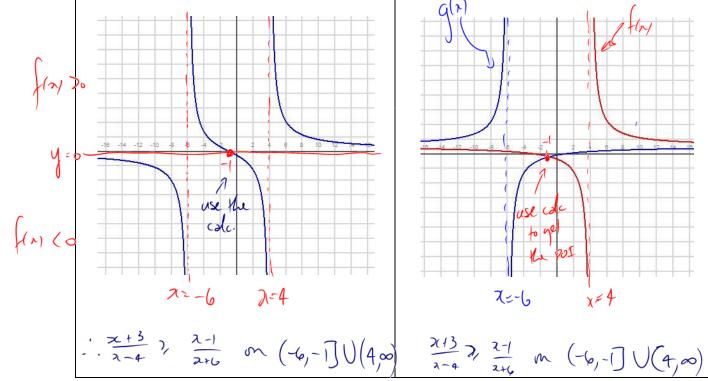
Solve
$$\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$$

Note: There are **TWO** methods, both of which require a **FUNCTION** (let $f(x) = \dots$ returns)

Solve $\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$ Solve $\frac{x+3}{x-4} \ge \frac{x-1}{x+6}$ 1) Get a Single Function (on one side of the inequality) $\Rightarrow x+3 \Rightarrow x-1$

$$\Rightarrow \frac{2+3}{2-4} - \frac{2-1}{2+6} > 6$$

Let
$$f(n) = \frac{(\lambda+3)}{(\lambda-4)} - \frac{(\lambda-1)}{(\lambda+6)}$$

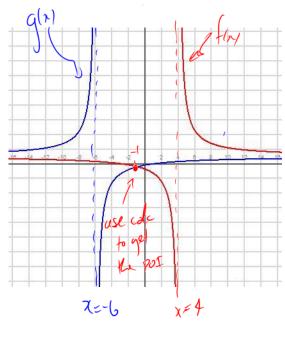


2) Use Two Functions (one for each side)

Let
$$f(x) = \frac{213}{2-4}$$

$$g(x) = 2-1$$

 $g(x) = \frac{x-1}{x+6}$ f(x) = g(x)



Class/Homework for Section 4.5

Pg. 295 - 297 #1, 3, 4 – 6 (def), 9, 11