5.3 Trigonometric Ratios and Special Triangles (Part 2 – Exact Values)

Recall the "Unit Circle" from yesterday:

With this circle (and without a calculator!) we can evaluate EXACTLY the trig ratios for the angles (in radians) $\theta = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ radians.

Now, using Special Triangles, and CAST we can evaluate EXACTLY trig ratios for "special angles".

Note: A trig ratio is a NUMBER.

Numbers have 2 qualities

- 1) volue (size)

2) Sign
Thus a trig ratio has a Volul

(which we evaluate using the related acute angle and Special Triangles)

AND, a trig ratio has a Sign which we find using CAST

Example 5.3.1

Determine Exactly (i.e. the use of a calculator means MARKS OFF)

a) $\sin\left(\frac{\pi}{3}\right)$

d) $\sec\left(\frac{5\pi}{3}\right)$

b) $\cos\left(\frac{5\pi}{6}\right)$

e) $\tan\left(\frac{3\pi}{2}\right)$

c) $\tan\left(\frac{5\pi}{4}\right)$

f) $\csc(-\pi)$

Example 5.3.2

Given sin(4) determine:

- a) The quadrant $\theta = 4$ is in.
- b) The sign of sin(4) (no calculators!)

negative by

Example 5.3.3

Given $\sin(t) = -\frac{4}{5}$, $+\pi \le t \le \frac{3\pi}{2}$, determine

- a) $\cos(t)$
- b) tan(t)
- c) t in radians, rounded to three decimal places.

$$\Rightarrow) cas(t) = -\frac{3}{5}$$

b)
$$ton(t) = \frac{4}{3}$$

c) to get
$$t' = \pi + \phi$$
 proset ke

colialate of in the "given"

$$\phi = \sin^{3}\left(\frac{4}{5}\right) = 0.927$$

: t= m++

= 3.141+0.927 = 4.068 rol.

Class/Homework for Section 5.3 Pg. 330 – 331 #5, 7, 9